RECONSTRUCTION OF INERTIA GROUPS ASSOCIATED TO LOG DIVISORS FROM A CONFIGURATION SPACE GROUP EQUIPPED WITH ITS COLLECTION OF LOG-FULL SUBGROUPS

KAZUMI HIGASHIYAMA

Abstract

In the present paper, we study configuration space groups. The goal of this paper is to reconstruct group-theoretically the inertia groups associated to various types of log divisors of a log configuration space of a smooth log curve from the associated configuration space group equipped with its collection of log-full subgroups.

0 . Introduction

Let l be a prime number; k an algebraically closed field of characteristic $\neq l$; $S \stackrel{\text { def }}{=} \operatorname{Spec}(k) ;(g, r)$ a pair of nonnegative integers such that $2 g-2+r>0 ; X^{\log } \rightarrow S$ a smooth log curve of type (g, r) (cf. Notation 1.3, (iv)); $n \in \mathbb{Z}_{>1}$. In the present paper, we study the n-th log configuration space $X_{n}^{\log }$ associated to $X^{\log } \rightarrow S$ (cf. Definition 2.1). Write U_{X} for the interior of the log scheme $X^{\log }$ (cf. Notation 1.2, (vi)). The log scheme $X_{n}^{\log }$ may be thought of as a certain compactification of the usual n-th configuration space $U_{X_{n}}$ associated to the smooth curve U_{X}. Write $\Pi_{n} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro-l }}\left(X_{n}^{\log }\right)$ for the pro-l configuration space group determined by $X_{n}^{\log }$ (cf. [MzTa], Definition 2.3, (i)), i.e., the maximal pro-l quotient of the fundamental group of the log scheme $X_{n}^{\log }$ (for a suitable choice of basepoint). We shall refer to an irreducible divisor of the underlying scheme of $X_{n}^{\text {log }}$ contained in the complement of $U_{X_{n}}$ as a log divisor of $X_{n}^{\log }$. Each log divisor V determines, up to Π_{n}-conjugacy, an inertia group $I_{V}\left(\simeq \mathbb{Z}_{l}\right) \subseteq \Pi_{n}$, which plays a central role in the present paper. Let V_{1}, \ldots, V_{n} be distinct \log divisors of $X_{n}^{\log }$ such that $V_{1} \cap \cdots \cap V_{n} \neq \emptyset$. Then we shall refer to $P \stackrel{\text { def }}{=} V_{1} \cap \cdots \cap V_{n}$ as a log-full point (cf. Definition 2.2, (ii), and Proposition 2.10). The log-full point $P=V_{1} \cap \cdots \cap V_{n}$ determines, up to Π_{n}-conjugacy, a log-full subgroup $A\left(\simeq I_{V_{1}} \times \cdots \times I_{V_{n}} \simeq \mathbb{Z}_{l}^{\oplus n}\right) \subseteq \Pi_{n}$ (cf. Definition 2.2, (iii)). It is known that the log-full subgroups of a configuration space group may be characterized grouptheoretically whenever the configuration space group is equipped with the action of a profinite group that satisfies certain properties (cf. [HMM], Theorem D). In the present paper, we reconstruct group-theoretically the inertia groups associated to the log divisors from a configuration space group equipped with its collection of log-full subgroups. Moreover, we reconstruct group-theoretically the inertia groups associated to the tripodal divisors (cf. Definition 3.1, (ii)) and the drift diagonals (cf. Definition 3.1, (iv)), as well as the drift collections of Π_{n} (cf. Definition 8.13) and the generalized fiber subgroups of Π_{n} (cf. Definition 9.1).

Our main result is as follows:

Theorem 0.1. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right) ;\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

(cf. Notation 1.2, (vi)) a smooth log curve of type $\left(g^{\square}, r^{\square}\right) ; n^{\square} \in \mathbb{Z}_{>1} ; X_{n}^{\log \square}$ the $n^{\square}-$ th \log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; \Pi^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X_{n}^{n-\log \square}\right)$ (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow[\rightarrow]{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups. We suppose that $r^{\square}>0$ (cf. the discussion below); ϕ induces a bijection between the set of log-full subgroups of Π° and the set of log-full subgroups of Π^{\bullet}. Then the following hold:
(i) ϕ induces a bijection between the set of inertia groups of Π° associated to log divisors of $X_{n}^{\log \circ}$ and the set of inertia groups of Π^{\bullet} associated to log divisors of $X_{n}^{\log \bullet}$ ($c f$. Theorem 5.2).
(ii) ϕ induces a bijection between the set of inertia groups of Π° associated to tripodal divisors of $X_{n^{\circ}}^{\log \circ}$ and the set of inertia groups of Π^{\bullet} associated to tripodal divisors of $X_{n}^{\log \bullet}(c f$. Theorem 6.6).
(iii) ϕ induces a bijection between the set of inertia groups of Π° associated to drift diagonals of $X_{n^{\circ}}^{\log \circ}$ and the set of inertia groups of Π^{\bullet} associated to drift diagonals of $X_{n}^{\log \bullet}(c f$. Theorem 7.3).
(iv) ϕ induces a bijection between the set of drift collections of Π° and the set of drift collections of Π^{\bullet} (cf. Theorem 8.14).
(v) ϕ induces a bijection between the set of generalized fiber subgroups of Π° and the set of generalized fiber subgroups of Π^{\bullet} (cf. Theorem 9.3).

Note that, roughly speaking, Theorem 0.1, (i), asserts that we may extract grouptheoretically a "geometric direct summand \mathbb{Z}_{l} " (i.e., an inertia group associated to a \log divisor) from " $\mathbb{Z}_{l}^{\oplus n}$ " (i.e., a log-full subgroup).

Note that one may define the notion of a log-full point even if $r=0$ (cf. [HMM], Definition 1.1). On the other hand, since log-full points do not exist when $r=0$, we suppose that $r>0$ in the present paper.

In the proof of Theorem 0.1, (ii), we use the fact that, in the notation of Theorem 0.1 , in fact $\left(g^{\circ}, r^{\circ}, n^{\circ}\right)=\left(g^{\bullet}, r^{\bullet}, n^{\bullet}\right)(c f$. Theorem 3.10, (i)), which is proven in [HMM], Theorem A, (i).

This paper is organized as follows: In $\S 1$, we explain some notations. In $\S 2$, we define \log configuration spaces, log-full points, and \log divisors. In $\S 3$, we define tripodal divisors and drift diagonals and then proceed to study the geometry of various types of log divisors. In $\S 4$, we give a group-theoretic reconstruction of the scheme-theoretically non-degenerate elements (cf. Definition 4.6, (i)) of a log-full subgroup. In $\S 5$, we reconstruct the inertia groups associated to the \log divisors. In $\S 6$, we reconstruct the inertia groups associated to the tripodal divisors. In $\S 7$, we reconstruct the inertia groups associated to the drift diagonals. In $\S 8$, we reconstruct the drift collections of a configuration space group. In $\S 9$, we reconstruct the generalized fiber subgroups of a configuration space group.

1. Notations

Notation 1.1. (i) Let G be a group. Then we shall write " $1_{G} \in G$ " for the identity element of G.
(ii) Let G be a group, $H \subseteq G$ a subgroup, and $\alpha \in G$. Then we shall write

$$
Z_{G}(H) \stackrel{\text { def }}{=}\{g \in G \mid g h=h g \text { for any } h \in H\}
$$

for the centralizer of H in G;

$$
Z_{G}(\alpha) \stackrel{\text { def }}{=} Z_{G}(\langle\alpha\rangle)=\{g \in G \mid g \alpha=\alpha g\}
$$

for the centralizer of α in G;

$$
N_{G}(H) \stackrel{\text { def }}{=}\left\{g \in G \mid g H g^{-1}=H\right\}
$$

for the normalizer of H in G.
Notation 1.2. Let $S^{\log }$ be an fs \log scheme (cf. [Naka], Definition 1.7).
(i) Write S for the underlying scheme of $S^{\log }$.
(ii) Write \mathcal{M}_{S} for the sheaf of monoids that defines the log structure of $S^{\log }$.
(iii) Let \bar{s} be a geometric point of S. Then we shall denote by $I\left(\bar{s}, \mathcal{M}_{S}\right)$ the ideal of $\mathcal{O}_{S, \bar{s}}$ generated by the image of $\mathcal{M}_{S, \bar{s}} \backslash \mathcal{O}_{S, \bar{s}}^{\times}$via the homomorphism of monoids $\mathcal{M}_{S, \bar{s}} \rightarrow \mathcal{O}_{S, \bar{s}}$ induced by the morphism $\mathcal{M}_{S} \rightarrow \mathcal{O}_{S}$ which defines the \log structure of $S^{\log }$.
(iv) Let $s \in S$ and \bar{s} a geometric point of S which lies over s. Write $\left(\mathcal{M}_{S, \bar{s}} / \mathcal{O}_{S, \bar{s}}^{\times}\right)^{\text {gp }}$ for the groupification of $\mathcal{M}_{S, \bar{s}} / \mathcal{O}_{S, \bar{s}}^{\times}$. Then we shall refer to the rank of the finitely generated free abelian group $\left(\mathcal{M}_{S, \bar{s}} / \mathcal{O}_{S, \bar{s}}^{\times}\right)^{\text {gp }}$ as the log rank at s. Note that one verifies easily that this rank is independent of the choice of \bar{s}, i.e., depends only on s.
(v) Let $m \in \mathbb{Z}$. Then we shall write

$$
S^{\log \leq m} \stackrel{\text { def }}{=}\{s \in S \mid \text { the log rank at } s \text { is } \leq m\}
$$

Note that since $S^{\log \leq m}$ is open in S (cf. [MzTa], Proposition 5.2, (i)), we shall also regard (by abuse of notation) $S^{\log \leq m}$ as an open subscheme of S.
(vi) We shall write $U_{S} \stackrel{\text { def }}{=} S^{\log \leq 0}$ and refer to U_{S} as the interior of $S^{\log \text {. When }}$ $U_{S}=S$, we shall often use the notation S to denote the \log scheme S^{log}.

Notation 1.3. Let (g, r) be a pair of nonnegative integers such that $2 g-2+r>0$.
(i) Write $\overline{\mathcal{M}}_{g, r}$ for the moduli stack (over \mathbb{Z}) of pointed stable curves of type (g, r) and $\mathcal{M}_{g, r} \subseteq \overline{\mathcal{M}}_{g, r}$ for the open substack corresponding to the smooth curves. Here, we assume the marked points to be ordered.
(ii) Write

$$
\overline{\mathcal{C}}_{g, r} \rightarrow \overline{\mathcal{M}}_{g, r}
$$

for the tautological curve over $\overline{\mathcal{M}}_{g, r} ; \overline{\mathcal{D}}_{g, r} \stackrel{\text { def }}{=} \overline{\mathcal{M}}_{g, r} \backslash \mathcal{M}_{g, r}$ for the divisor at infinity.
(iii) Write $\overline{\mathcal{M}}_{g, r}^{\log }$ for the log stack obtained by equipping the moduli stack $\overline{\mathcal{M}}_{g, r}$ with the log structure determined by the divisors with normal crossings $\overline{\mathcal{D}}_{g, r}$.
(iv) The divisor of $\overline{\mathcal{C}}_{g, r}$ given by the union of $\overline{\mathcal{C}}_{g, r} \times \overline{\mathcal{M}}_{g, r} \overline{\mathcal{D}}_{g, r}$ with the divisor of $\overline{\mathcal{C}}_{g, r}$ determined by the marked points determines a \log structure on $\overline{\mathcal{C}}_{g, r}$; we denote the resulting \log stack by $\overline{\mathcal{C}}_{g, r}^{\log }$. Thus, we obtain a morphism of \log stacks

$$
\overline{\mathcal{C}}_{g, r}^{\log } \rightarrow \overline{\mathcal{M}}_{g, r}^{\mathrm{log}}
$$

which we refer to as the tautological log curve over $\overline{\mathcal{M}}_{g, r}^{\log }$. If $S^{\log }$ is an arbitrary log scheme, then we shall refer to a morphism

$$
C^{\log } \rightarrow S^{\log }
$$

whose pull-back to some finite étale covering $T \rightarrow S$ is isomorphic to the pullback of the tautological \log curve via some morphism $T^{\log } \stackrel{\text { def }}{=} S^{\log } \times_{S} T \rightarrow$ $\overline{\mathcal{M}}_{g, r}^{\log }$ as a stable log curve (of type (g, r)). If $C \rightarrow S$ is smooth, i.e., every geometric fiber of $C \rightarrow S$ is free of nodes, then we shall refer to $C^{\log } \rightarrow S^{\log }$ as a smooth log curve (of type (g, r)).
(v) A smooth log curve of type $(0,3)$ will be referred to as a tripod. A vertex of a semi-graph of anabelioids of pro-l PSC-type (cf. [CmbGC], Definition 1.1, (i)) of type $(0,3)(\mathrm{cf} .[\mathrm{CbTpI}]$, Definition 2.3 , (iii)) will also be referred to as a tripod.

Definition 1.4. Let \mathcal{G} be a semi-graph of anabelioids of pro-l PSC-type (cf. [CmbGC], Definition 1.1, (i)) and \mathbb{G} the underlying semi-graph of \mathcal{G}. Write

$$
\operatorname{Cusp}(\mathbb{G})(\operatorname{resp} . \operatorname{Node}(\mathbb{G}), \operatorname{Vert}(\mathbb{G}), \operatorname{Edge}(\mathcal{G}))
$$

for the set of cusps (resp. nodes, vertices, edges) of \mathbb{G} and

$$
\begin{aligned}
\operatorname{Cusp}(\mathcal{G}) & \stackrel{\text { def }}{=} \operatorname{Cusp}(\mathbb{G}), \operatorname{Node}(\mathcal{G}) \stackrel{\text { def }}{=} \operatorname{Node}(\mathbb{G}) \\
\operatorname{Vert}(\mathcal{G}) & \stackrel{\text { def }}{=} \operatorname{Vert}(\mathbb{G}), \operatorname{Edge}(\mathcal{G}) \stackrel{\text { def }}{=} \operatorname{Edge}(\mathbb{G})
\end{aligned}
$$

2. Log configuration spaces and log divisors

Let l be a prime number; k an algebraically closed field of characteristic $\neq l$; $S \stackrel{\text { def }}{=} \operatorname{Spec}(k) ;(g, r)$ a pair of nonnegative integers such that $2 g-2+r>0 ;$

$$
X^{\log } \rightarrow S
$$

(cf. Notation 1.2 , (vi)) a smooth log curve of type $(g, r) ; n \in \mathbb{Z}_{>0}$. We suppose that the marked points of $X^{\log }$ are equipped with an ordering, and that

$$
r>0
$$

(cf. the discussion at the end of the Introduction). In the present $\S 2$, we define log configuration spaces, log-full points, and log divisors.

Definition 2.1. The smooth \log curve $X^{\log }$ over S determines, up to a choice of ordering of the marked points (which will in fact not affect the following construction), a classifying morphism $S \rightarrow \overline{\mathcal{M}}_{g, r}^{\log }$. Thus, by pulling back the morphism $\overline{\mathcal{M}}_{g, r+n}^{\log } \rightarrow \overline{\mathcal{M}}_{g, r}^{\log }$ given by forgetting the last n marked points via this morphism $S \rightarrow \overline{\mathcal{M}}_{g, r}^{\log }$, we obtain a morphism of log schemes

$$
X_{n}^{\log } \rightarrow S
$$

We shall refer to X_{n}^{log} as the n-th log configuration space associated to $X^{\log } \rightarrow S$. Note that $X_{1}^{\log }=X^{\mathrm{log}}$. Write $X_{0}^{\log } \stackrel{\text { def }}{=} S$.

Definition 2.2. (i) Write

$$
\Pi_{n} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro-l }}\left(X_{n}^{\log }\right)
$$

for the maximal pro-l quotient of the fundamental group of the log scheme $X_{n}^{\log }$ (for a suitable choice of basepoint). We refer to [Hsh], Theorems B.1, B.2, for more details on fundamental groups of log schemes.
(ii) Let P be a closed point of X_{n}. By abuse of notation, we shall use the notation " P " both for the corresponding point of the scheme X_{n} and for the reduced closed subscheme of X_{n} determined by this point. Then we shall say that P is a log-full point of $X_{n}^{\log }$ if

$$
\operatorname{dim}\left(\mathcal{O}_{X_{n}, P} / I\left(P, \mathcal{M}_{X_{n}}\right)\right)=0
$$

(cf. Notation 1.2, (iii)).
(iii) Let P be a log-full point of $X_{n}^{\log }$ and $P^{\log }$ the \log scheme obtained by restricting the log structure of $X_{n}^{\log }$ to the reduced closed subscheme of X_{n} determined by P. Then we obtain an outer homomorphism $\pi_{1}\left(P^{\mathrm{log}}\right) \rightarrow \Pi_{n}$ (for suitable choices of basepoints). We shall refer to the subgroup $\operatorname{Im}\left(\pi_{1}\left(P^{\log }\right) \rightarrow \Pi_{n}\right)$, which is well-defined up to Π_{n}-conjugation, as a log-full subgroup at P.
(iv) We shall often refer to a point of the scheme X_{n} as a point of $X_{n}^{\log }$. Let P be a point of $X_{n}^{\log }$. Then P parametrizes a pointed stable curve of type $(g, r+n)$ (cf. Definition 2.1). Thus, any geometric point of $X_{n}^{\log }$ lying over P determines a semi-graph of anabelioids of pro-l PSC-type, which is in fact easily verified to be independent of the choice of geometric point lying over P. We shall write \mathcal{G}_{P} for this semi-graph of anabelioids of pro-l PSC-type.
(v) Let us fix an ordered set

$$
C_{r, n} \stackrel{\text { def }}{=}\left\{c_{1}, \ldots, c_{r}, x_{1} \stackrel{\text { def }}{=} c_{r+1}, \ldots x_{n} \stackrel{\text { def }}{=} c_{r+n}\right\} .
$$

Thus, by definition, for each point P of $X_{n}^{\log }$, we have a natural bijection $C_{r, n} \xrightarrow{\sim} \operatorname{Cusp}\left(\mathcal{G}_{P}\right)$. In the following, let us identify the set $\operatorname{Cusp}\left(\mathcal{G}_{P}\right)$ with $C_{r, n}$.
(vi) We shall refer to an irreducible divisor of X_{n} contained in the complement $X_{n} \backslash U_{X_{n}}$ of the interior $U_{X_{n}}$ of $X_{n}^{\log }$ as a log divisor of $X_{n}^{\log }$. That is to say, a \log divisor of $X_{n}^{\log }$ is an irreducible divisor of X_{n} whose generic point parametrizes a pointed stable curve with precisely two irreducible components (cf. Definition 2.1).
(vii) Let V be a \log divisor of $X_{n}^{\log }$. Then we shall write \mathcal{G}_{V} for " \mathcal{G}_{P} " in the case where we take " P " to be the generic point of V.
(viii) For each $i \in\{1, \ldots, n\}$, write $p_{i}: X_{n}^{\log } \rightarrow X^{\log }$ for the projection morphism of co-profile $\{i\}$ (cf. [MzTa], Definition 2.1, (ii)). Write $\iota \stackrel{\text { def }}{=}\left(p_{1}, \ldots, p_{n}\right): X_{n}^{\log } \rightarrow$ $X^{\log } \times_{S} \cdots \times_{S} X^{\log .}$
Definition 2.3. Let $m \geq 2$ and $y_{1}, \ldots, y_{m} \in C_{r, n}$ distinct elements such that $\sharp\left(\left\{y_{1}, \ldots, y_{m}\right\} \cap\left\{c_{1}, \ldots, c_{r}\right\}\right) \leq 1$. Then one verifies immediately - by considering clutching morphisms (cf. [Knu], Definition 3.8) - that there exists a unique log divisor V of $X_{n}^{\log }$, which we shall denote by $V\left(\left\{y_{1}, \ldots, y_{m}\right\}\right)$, that satisfies the following condition: \mathcal{G}_{V} has precisely two vertices v_{1}, v_{2} such that v_{1} is of type
$(0, m+1), v_{2}$ is of type $(g, n+r-m+1)$, and y_{1}, \ldots, y_{m} are cusps of $\left.\mathcal{G}_{V}\right|_{v_{1}}(\mathrm{cf}$. [CbTpI], Definition 2.1, (iii)).

Remark 2.4. Let V be a \log divisor of $X_{n}^{\log }$. Then let us observe that there exists a unique collection of distinct elements $y_{1}, \ldots, y_{m} \in C_{r, n}$ such that $\sharp\left(\left\{y_{1}, \ldots, y_{m}\right\} \cap\right.$ $\left.\left\{c_{1}, \ldots, c_{r}\right\}\right) \leq 1$ and $V=V\left(\left\{y_{1}, \ldots, y_{m}\right\}\right)$. (Note that uniqueness holds even in the case where $g=0$ (in which case $r \geq 3$), as a consequence of the condition that $\sharp\left(\left\{y_{1}, \ldots, y_{m}\right\} \cap\left\{c_{1}, \ldots, c_{r}\right\}\right) \leq 1$.) This observation is essentially a special case of Proposition 2.6, (iii), below.

Definition 2.5. Let \mathcal{G} be a semi-graph of anabelioids of pro-l PSC-type and \mathbb{G} the underlying semi-graph of \mathcal{G}. Suppose that \mathbb{G} is a tree. Let $e \in \operatorname{Edge}(\mathcal{G}), v \in \operatorname{Vert}(\mathcal{G})$ be such that e abuts to v. Write b for the branch of e that abuts to v. By replacing e by open edges e_{1}, e_{2} such that e_{1} abuts to v, and e_{2} abuts to the vertex $\neq v$ to which e abuts (resp. e_{1} abuts to v, and e_{2} is an edge which abuts to no vertex) if $e \in \operatorname{Node}(\mathcal{G})($ resp. $e \in \operatorname{Cusp}(\mathcal{G}))$, we obtain two connected semi-graphs. Write $\mathbb{G}_{\nexists b}$ for the semi-graph (among these two connected semi-graphs) that does not contain b. Write $\mathbb{G}_{\ni b b}$ for the semi-graph (among these two connected semi-graphs) that contains b. Observe that

- for arbitrary $e \in \operatorname{Edge}(\mathcal{G}), \mathcal{G}$ determines a natural semi-graph of anabelioids of pro-l PSC-type $\mathcal{G}_{\ni b}$ whose underlying semi-graph may be identified with $\mathbb{G}_{\ni b} ;$
- if $e \in \operatorname{Node}(\mathcal{G})$, then \mathcal{G} also determines a natural semi-graph of anabelioids of pro-l PSC-type $\mathcal{G}_{\nexists b}$ whose underlying semi-graph may be identified with $\mathbb{G}_{\nexists b}$.

Proposition 2.6. Let P be a point of X_{n}^{log}. Write \mathbb{G} for the underlying semi-graph of \mathcal{G}_{P} (cf. Definition 2.2, (iv)). Then the following hold:
(i) \mathbb{G} is a tree.
(ii) $\operatorname{Cusp}\left(\mathcal{G}_{P}\right)=\left\{c_{1}, \ldots, c_{r}, x_{1}, \ldots, x_{n}\right\}$.
(iii) There exists a unique vertex $v_{g} \in \operatorname{Vert}\left(\mathcal{G}_{P}\right)$ that satisfies the following properties:
(a) The genus of $\left.\mathcal{G}_{P}\right|_{v_{g}}$ (cf. [CbTpI], Definitions 2.1, (iii); 2.3, (ii)) is g.
(b) Let $e \in \operatorname{Node}\left(\mathcal{G}_{P}\right)$ that abuts to v_{g} and b_{g} the branch of e that abuts to v_{g}. Then $\sharp\left(\operatorname{Cusp}\left((\mathbb{G})_{\ni b_{g}}\right) \cap\left\{c_{1}, \ldots, c_{r}\right\}\right) \geq r-1$.
(c) For each $v \in \operatorname{Vert}\left(\mathcal{G}_{P}\right) \backslash\left\{v_{g}\right\}$, the genus of $\left.\mathcal{G}_{P}\right|_{v}$ is 0 .

Proof. Assertion (i) follows immediately from the definition of \mathcal{G}_{P}. Assertion (ii) follows from Definition 2.2, (v). Finally, we verify assertion (iii). Existence is immediate. If $g \neq 0$, uniqueness is immediate. If $g=0$, it follows that $r \geq 3$. Now assume that there exists a vertex $v_{g}^{\prime} \in \operatorname{Vert}\left(\mathcal{G}_{P}\right)$ such that $v_{g}^{\prime} \neq v_{g}$, and v_{g}^{\prime} satisfies conditions (a), (b). It follows immediately from the connectedness of \mathbb{G} that there exists a node $e \in \operatorname{Node}\left(\mathcal{G}_{P}\right)$ such that e abuts to v_{g}, and $v_{g}^{\prime} \in \operatorname{Vert}\left(\mathbb{G}_{\nexists b_{g}}\right)$, where we write b_{g} for the branch of e that abuts to v_{g}. By condition (b) in the case of v_{g}, b_{g}, it holds that $\sharp\left(\operatorname{Cusp}\left(\mathbb{G}_{\ni b_{g}}\right) \cap\left\{c_{1}, \ldots, c_{r}\right\}\right) \geq r-1 \geq 2$. On the other hand, it follows immediately from the connectedness of \mathbb{G} that there exists a node $e^{\prime} \in \operatorname{Node}\left(\mathcal{G}_{P}\right)$ such that e^{\prime} abuts to v_{g}^{\prime}, and $v_{g} \in \operatorname{Vert}\left(\mathbb{G}_{\nexists b_{g}^{\prime}}\right)$, where we write b_{g}^{\prime} for the branch of e^{\prime} that abuts to v_{g}^{\prime}. Next observe that it follows immediately from the fact that \mathbb{G} is a tree that $\mathbb{G}_{\ni b_{g}}$ is a sub-semi-graph of $\mathbb{G}_{\nexists b_{g}^{\prime}}$, which implies that
$\sharp\left(\operatorname{Cusp}\left(\mathbb{G}_{\ni b_{g}^{\prime}}\right) \cap\left\{c_{1}, \ldots, c_{r}\right\}\right) \leq r-2$. Thus, by condition (b) in the case of $v_{g}^{\prime}, b_{g}^{\prime}$, we obtain a contradiction.

Definition 2.7. Let P be a point of $X_{n}^{\log }$. Write \mathbb{G} for the underlying semi-graph of $\mathcal{G}_{P}, v_{g} \in \operatorname{Vert}\left(\mathcal{G}_{P}\right)$ for the vertex of Proposition 2.6, (iii). For $e \in \operatorname{Node}\left(\mathcal{G}_{P}\right)$, write b_{e} for the branch of e such that $v_{g} \in \operatorname{Vert}\left(\mathbb{G}_{\ni b_{e}}\right)$. Then we shall write

$$
I_{\mathbb{G}} \stackrel{\text { def }}{=}\left\{\operatorname{Cusp}\left((\mathbb{G})_{\nexists b_{e}}\right) \cap C_{r, n} \mid e \in \operatorname{Node}\left(\mathcal{G}_{P}\right)\right\} \subseteq 2^{C_{r, n}}
$$

where we write $2^{(-)}$for the set of subsets of $(-)$. Note that it follows immediately from Proposition 2.6, (iii), that for each $I \in I_{\mathbb{G}}, \sharp I \geq 2$.

Proposition 2.8. Let P, P^{\prime} be points of X_{n}^{log}. Write $\mathbb{G}, \mathbb{G}^{\prime}$ for the respective underlying semi-graphs of $\mathcal{G}_{P}, \mathcal{G}_{P^{\prime}} ; v_{g}, v_{g}^{\prime}$ for the respective vertices characterized in Proposition 2.6, (iii). If $I_{\mathbb{G}}=I_{\mathbb{G}^{\prime}} \subseteq 2^{C_{r, n}}$, then there exists a unique isomorphism of semi-graphs $\mathbb{G} \xrightarrow{\sim} \mathbb{G}^{\prime}$ that maps $v_{g} \mapsto v_{g}^{\prime}$ and is compatible with the labels of cusps $\in C_{r, n} . \operatorname{Moreover}, \sharp \operatorname{Vert}(\mathbb{G})=\sharp I_{\mathbb{G}}+1, \sharp \operatorname{Node}(\mathbb{G})=\sharp \operatorname{Node}\left(\mathcal{G}_{P}\right)=\sharp I_{\mathbb{G}}$.
Proof. Let $J \in I_{\mathbb{G}}$. Write $J_{\subseteq} \stackrel{\text { def }}{=}\left\{I \in I_{\mathbb{G}} \mid I \subseteq J \subseteq C_{r, n}\right\}$. Then one verifies immediately that one may construct a (well-defined) semi-graph \mathbb{G}_{J} satisfying the following properties:
(i) The elements of $\operatorname{Vert}\left(\mathbb{G}_{J}\right)$ are equipped with labels $\in J_{\subseteq}$ that determine a bijection $\operatorname{Vert}\left(\mathbb{G}_{J}\right) \xrightarrow{\sim} J_{\subseteq}$.
(ii) Let us call a subset $\left\{J_{1}, J_{2}\right\} \subseteq J_{\subseteq}$ of cardinality ≤ 2 an adjacent pair of J_{\subseteq} if $J_{1} \subsetneq J_{2}$, and there does not exist an element $I \in I_{\mathbb{G}}$ such that $J_{1} \subsetneq I \subsetneq J_{2}$. $\overline{\text { For }}$ $e \in \operatorname{Node}\left(\mathbb{G}_{J}\right)$, write $\operatorname{Vert}(e) \subseteq \operatorname{Vert}\left(\mathbb{G}_{J}\right) \xrightarrow{\sim} J_{\subseteq}$ for the subset (of cardinality $\leq 2)$ of vertices to which e abuts. Then the assignment

$$
\operatorname{Node}\left(\mathbb{G}_{J}\right) \ni e \mapsto \operatorname{Vert}(e) \in 2^{\operatorname{Vert}\left(\mathbb{G}_{J}\right)} \xrightarrow[\rightarrow]{\sim} 2^{J} \subseteq
$$

determines a bijection of $\operatorname{Node}\left(\mathbb{G}_{J}\right)$ onto the set of adjacent pairs of J_{\subseteq}.
(iii) The cusps of \mathbb{G}_{J} are equipped with labels $\in C_{r, n}$ in such a way that, for each $I \in J_{\subseteq}$, these labels determine a bijection from the set of cusps of the vertex labeled by I onto the subset $I \backslash\left(\bigcup_{I_{\mathrm{G}} \ni J^{*} \subseteq I} J^{*}\right) \subseteq C_{r, n}$. Moreover, these labels determine a bijection $\operatorname{Cusp}\left(\mathbb{G}_{J}\right) \xrightarrow{\sim} J\left(\subseteq C_{r, n}\right)$.
Next, one verifies immediately that one may construct a (well-defined) semi-graph $\mathbb{G}_{I_{G}}$ satisfying the following properties:
(I) There exists a unique vertex of $\mathbb{G}_{I_{G}}$ equipped with a label v_{g}. The set of cusps of this vertex v_{g} are equipped with labels $\in C_{r, n}$ which determine a bijection from the set of cusps of this vertex v_{g} to the subset $C_{r . n} \backslash\left(\bigcup_{I \in I_{\mathrm{G}}} I\right) \subseteq C_{r, n}$.
(II) The semi-graph $\mathbb{G}_{I_{\mathbb{G}}}$ is obtained from v_{g} (together with its associated cusps) by gluing v_{g} to \mathbb{G}_{J}, where $J \in I_{\mathbb{G}}$ ranges over the elements of $I_{\mathbb{G}}$ that are maximal with respect to the relation of inclusion, along a node $e_{J} \in \operatorname{Node}\left(\mathbb{G}_{I_{\mathrm{G}}}\right)$ that abuts to v_{g} and the vertex of \mathbb{G}_{J} labeled J (cf. (i)).
(III) The cusps of $\mathbb{G}_{I_{\mathbb{G}}}$ are equipped with labels $\in C_{r, n}$ that are compatible with the labels of (I) (in the case of the cusps associated to the vertex labeled v_{g}) and (i) (in the case of the cusps associated to vertices $\in \operatorname{Vert}\left(\mathbb{G}_{J}\right)$, for J as in (II)). These labels determine a bijection $\operatorname{Cusp}\left(\mathbb{G}_{I_{G}}\right) \xrightarrow{\sim} C_{r, n}$.
Then it follows immediately from Definition 2.7 that there exists a unique isomorphism of semi-graphs $\mathbb{G} \xrightarrow{\sim} \mathbb{G}_{I_{\mathbb{G}}}$ that is compatible with the label " v_{g} ", as well as
with the labels of cusps $\in C_{r, n}$. Since \mathbb{G} is a tree, it follows that $\mathbb{G}_{I_{G}} \leftleftarrows \mathbb{G}$ is also a tree. On the other hand, observe that it follows immediately from the construction of $\mathbb{G}_{I_{\mathbb{G}}}$ (cf. (i), (I), (II)), together with the definition of $I_{\mathbb{G}}$ (cf. Definition 2.7), that $\sharp \operatorname{Vert}\left(\mathbb{G}_{I_{\mathbb{G}}}\right)=\sharp I_{\mathbb{G}}+1$. Since $\mathbb{G}_{I_{\mathbb{G}}}$ is a tree, we thus conclude that $\sharp \operatorname{Node}\left(\mathbb{G}_{I_{\mathbb{G}}}\right)=\sharp I_{\mathbb{G}}$. Finally, since $\mathbb{G}_{I_{\mathbb{G}}}$ is completely determined by the subset $I_{\mathbb{G}} \subseteq 2^{C_{r, n}}$, the remainder of Proposition 2.8 follows immediately.
Proposition 2.9. Let P be a point of $X_{n}^{\log }$ and $I \subseteq C_{r, n}$ such that $\sharp\left(I \cap\left\{c_{1}, \ldots, c_{r}\right\}\right)$ ≤ 1. Write \mathbb{G} for the underlying semi-graph of \mathcal{G}_{P}. Then the following conditions are equivalent:
(i) $P \in V(I)$ (cf. Definition 2.3).
(ii) $I \in I_{\mathbb{G}}$.
(iii) $\mathcal{G}_{V(I)}$ is obtained from \mathcal{G}_{P} by generization (with respect to some subset of $\operatorname{Node}\left(\mathcal{G}_{P}\right)(c f .[\mathrm{CbTpI}]$, Definition 2.8)).
Proof. The equivalence (i) \Longleftrightarrow (iii) follows immediately - by considering clutching morphisms (cf. [Knu], Definition 3.8) - from the latter portion of Definition 2.2, (vi). The equivalence (ii) \Longleftrightarrow (iii) follows immediately from Definition 2.7.

Proposition 2.10. Let $m \in\{1, \ldots, n\} ; V_{1}, \ldots, V_{m}$ a collection of distinct log divisors of $X_{n}^{\log }$ such that $V_{1} \cap \cdots \cap V_{m} \neq \emptyset$. Then there exist nonnegative integers i_{0}, \ldots, i_{m} such that

$$
i_{0}+\cdots+i_{m}=n-m
$$

and the intersection $V_{1} \cap \cdots \cap V_{m}$ is isomorphic, over S, to

$$
X_{i_{0}} \times_{S}\left(\overline{\mathcal{M}}_{0, i_{1}+3} \times_{\mathbb{Z}} \cdots \times_{\mathbb{Z}} \overline{\mathcal{M}}_{0, i_{m}+3} \times_{\mathbb{Z}} S\right)
$$

In particular, the intersection $V_{1} \cap \cdots \cap V_{m}$ is irreducible of dimension $n-m$; if $m=n$, then $V_{1} \cap \cdots \cap V_{n}$ is (the reduced closed subscheme determined by) a log-full point.
Proof. Let P be a generic point of $V_{1} \cap \cdots \cap V_{m}$. Write \mathbb{G}_{P} for the underlying semigraph of \mathcal{G}_{P}. Recall from Proposition 2.8 that $\sharp \operatorname{Vert}\left(\mathbb{G}_{P}\right)-1=\sharp \operatorname{Node}\left(\mathcal{G}_{P}\right)=\sharp I_{\mathbb{G}_{P}}$. Thus, we conclude from Remark 2.4, together with the equivalence (i) \Longleftrightarrow (ii) of Proposition 2.9, that
$\sharp \operatorname{Node}\left(\mathcal{G}_{P}\right)=\sharp I_{\mathbb{G}_{P}}=\sharp\left\{V \mid V\right.$ is a \log divisor of $X_{n}^{\log }$ such that $\left.P \in V\right\} \geq m$.
Since the divisor that determines the log structure of $X_{n}^{\log }$ is a divisor with normal crossings, we thus conclude that $\sharp \operatorname{Vert}\left(\mathbb{G}_{P}\right)-1=\sharp \operatorname{Node}\left(\mathcal{G}_{P}\right)=m$, and hence that
$\left\{V \mid V\right.$ is a \log divisor of $X_{n}^{\log }$ such that $\left.P \in V\right\}=\left\{V_{1}, \ldots, V_{m}\right\}$.
Thus, it follows from Proposition 2.6, (ii), that
$\sharp\left\{\right.$ branches of edges (i.e., cusps and nodes) of $\left.\mathcal{G}_{P}\right\}=n+r+2 m$.
Next, observe that it follows from Proposition 2.6, (iii), that there exists a clutching morphism

$$
\rho_{P}: X_{i_{0}} \times_{S}\left(\overline{\mathcal{M}}_{0, i_{1}+3} \times_{\mathbb{Z}} \cdots \times_{\mathbb{Z}} \overline{\mathcal{M}}_{0, i_{m}+3} \times_{\mathbb{Z}} S\right) \rightarrow X_{n}
$$

(cf. [Knu], Definition 3.8) such that P lies in the image of this morphism ρ_{P}. Since the morphism ρ_{P} is a proper monomorphism (cf. Propositions 2.6, (iii); 2.8), it follows that the morphism ρ_{P} is a closed immersion. Thus, if we write X_{P} for the scheme-theoretic closure of P in X_{n} and $X_{\rho_{P}}$ for the image of ρ_{P} in X_{n}, then $X_{P} \subseteq X_{\rho_{P}}$.

Next, observe that since the sum of the cardinalities of the sets of cusps of the pointed stable curves parametrized by the moduli stack factors of the domain of ρ_{P} is equal to

$$
\left(i_{0}+r\right)+\sum_{j=1}^{m}\left(i_{j}+3\right)
$$

it holds that

$$
\left(i_{0}+r\right)+\sum_{j=1}^{m}\left(i_{j}+3\right)=\sharp\left\{\text { branches of edges of } \mathcal{G}_{P}\right\}=n+r+2 m,
$$

and hence that

$$
i_{0}+\sum_{j=1}^{m} i_{j}=n-m
$$

Since

$$
\operatorname{dim}\left(X_{\rho_{P}}\right)=\operatorname{dim}\left(X_{i_{0}} \times_{S}\left(\overline{\mathcal{M}}_{0, i_{1}+3} \times_{\mathbb{Z}} \cdots \times_{\mathbb{Z}} \overline{\mathcal{M}}_{0, i_{m}+3} \times_{\mathbb{Z}} S\right)\right)=i_{0}+\sum_{j=1}^{m} i_{j}
$$

and $V_{1} \cup \cdots \cup V_{m}$ is a divisor with normal crossings (which implies that $\operatorname{dim}\left(X_{P}\right)=$ $\left.\operatorname{dim}\left(V_{1} \cap \cdots \cap V_{m}\right)=n-m\right)$, we thus conclude that

$$
\operatorname{dim}\left(X_{\rho_{P}}\right)=\operatorname{dim}\left(X_{P}\right)
$$

and hence that $X_{\rho_{P}}=X_{P}$. Moreover, since

$$
\left\{V \mid V \text { is a } \log \text { divisor of } X_{n}^{\log } \text { such that } P \in V\right\}=\left\{V_{1}, \ldots, V_{m}\right\},
$$

we thus conclude from Remark 2.4, together with the equivalence (i) \Longleftrightarrow (ii) of Proposition 2.9, that $\left\{V_{1}, \ldots, V_{m}\right\}$ determines $I_{\mathbb{G}_{P}}$, hence, by Proposition 2.8, that $\left\{V_{1}, \ldots, V_{m}\right\}$ determines \mathcal{G}_{P}. But this implies that every generic point of $V_{1} \cap \cdots \cap V_{m}$ lies in $X_{\rho_{P}}$, for some fixed P, and hence that $V_{1} \cap \cdots \cap V_{m}$ is irreducible. This completes the proof of Proposition 2.10.

3. Various types of log divisors

We continue with the notation introduced at the beginning of $\S 2$. In addition, we suppose that $n \in \mathbb{Z}_{>1}$. In the present $\S 3$, we define various types of \log divisors and study their geometry.

Definition 3.1. (i) For positive integers $i \in\{1, \ldots, n-1\}, j \in\{i+1, \ldots, n\}$, write

$$
\pi_{i, j}: X \times_{S} \cdots \times_{S} X \rightarrow X \times_{S} X
$$

for the projection of the fiber product of n copies of $X \rightarrow S$ to the i-th and j th factors. Write $\delta_{i, j}^{\prime}$ for the inverse image via $\pi_{i, j}$ of the image of the diagonal embedding $X \hookrightarrow X \times_{S} X$. Write $\delta_{i, j}$ for the uniquely determined log divisor of $X_{n}^{\log }$ whose generic point maps to the generic point of $\delta_{i, j}^{\prime}$ via the natural morphism $X_{n} \rightarrow X \times_{S} \cdots \times_{S} X$ (cf. Definition 2.2, (viii)). We shall refer to the \log divisor $\delta_{i, j}$ as a naive diagonal of $X_{n}^{\log }$.
(ii) Let V be a \log divisor of $X_{n}^{\log }$. We shall say that V is a tripodal divisor if one of the vertices of \mathcal{G}_{V} (cf. Definition 2.2, (vii)) is a tripod (cf. Notation 1.3, (v)).
(iii) Let V be a \log divisor of $X_{n}^{\log }$. We shall say that V is a (g, r)-divisor if one of the vertices of \mathcal{G}_{V} is of type (g, r) (cf. [CbTpI], Definition 2.3, (iii)).
(iv) Let V be a \log divisor of $X_{n}^{\log }$. We shall say that V is a drift diagonal if there exist a naive diagonal δ and an automorphism α of $X_{n}^{\log }$ over S such that $V=\alpha(\delta)$.
Remark 3.2. Recall (cf. [NaTa], Theorem D) that:

- when $(g, r)=(0,3)$ or $(1,1)$, any automorphism of $X_{n}^{\log }$ over S necessarily arises as the composite of an automorphism (of $X_{n}^{\text {log }}$ that arises from an automorphism) of $X^{\log }$ over S with an automorphism of $X_{n}^{\log }$ that arises from a permutation of the $r+n$ marked points of the stable log curve $X_{n+1}^{\log } \rightarrow X_{n}^{\log }$;
- when $(g, r) \neq(0,3),(1,1)$, any automorphism of $X_{n}^{\log }$ over S necessarily arises as the composite of an automorphism (of $X_{n}^{\log }$ that arises from an automorphism) of $X^{\log }$ over S with an automorphism of $X_{n}^{\log }$ that arises from a permutation of the n factors of $X_{n}^{\log }$.
Proposition 3.3. The following hold:
(i) It holds that
$\{$ naive diagonals $\}=\left\{V\left(\left\{x_{i}, x_{j}\right\}\right) \mid i \in\{1, \ldots, n-1\}, j \in\{i+1, \ldots, n\}\right\}$
(cf. Definition 2.3).
(ii) If $(g, r) \neq(0,3)$, then

$$
\{\text { tripodal divisors }\}
$$

$=\left\{V\left(\left\{y_{1}, y_{2}\right\}\right) \mid y_{1}, y_{2} \in C_{r, n}\right.$ are distinct elements, $\left.\left\{y_{1}, y_{2}\right\} \nsubseteq\left\{c_{1}, \ldots, c_{r}\right\}\right\}$
(cf. Definition 2.3).
(iii) If $(g, r)=(0,3)$, then

$$
\begin{aligned}
\{\text { tripodal divisors }\} & =\left\{V\left(\left\{y_{1}, y_{2}\right\}\right) \mid C_{r, n} \supseteq\left\{y_{1}, y_{2}\right\} \nsubseteq\left\{c_{1}, c_{2}, c_{3}\right\}\right\} \\
& \cup\left\{V\left(\left\{y_{1}, y_{2}\right\}\right) \stackrel{\text { def }}{=} V\left(C_{r, n} \backslash\left\{y_{1}, y_{2}\right\}\right) \mid\left\{y_{1}, y_{2}\right\} \subseteq\left\{c_{1}, c_{2}, c_{3}\right\}\right\}
\end{aligned}
$$

(cf. Definition 2.3).
(iv) Let V be a tripodal divisor and α an automorphism of $X_{n}^{\log }$ over S. Then $\alpha(V)$ is a tripodal divisor.

Proof. First, assertion (i) follows immediately from the various definitions involved. Next, assertions (ii), (iii) follow immediately from Remark 2.4, together with the definition of tripodal divisors. Finally, we consider assertion (iv). It follows from Remark 3.2 that α lifts to an automorphism of $X_{n+1}^{\log }$ relative to the natural morphism $X_{n+1}^{\mathrm{log}} \rightarrow X_{n}^{\mathrm{log}}$, hence induces an isomorphism of \mathcal{G}_{V} with $\mathcal{G}_{\alpha(V)}$. This completes the proof of assertion (iv).

Proposition 3.4. The following hold:
(i) It holds that
$\{$ naive diagonals $\} \subseteq\{$ drift diagonals $\} \subseteq\{$ tripodal divisors $\} \subseteq\{$ log divisors $\}$.
(ii) If $(g, r) \neq(0,3),(1,1)$, then
$\{$ naive diagonals $\}=\{$ drift diagonals $\}$.
(iii) If $(g, r)=(0,3)$ or $(1,1)$, then
$\{$ drift diagonals $\}=\{$ tripodal divisors $\}$.
Proof. First, we verify assertion (i). The first and third inclusions follow immediately from the various definitions involved. The second inclusion follows from Proposition 3.3, (i), (iv). This completes the proof of assertion (i). Assertion (ii) follows immediately from Remark 3.2.

Finally, we consider assertion (iii). Let V be a tripodal divisor. Let us first suppose that $(g, r)=(0,3)$. Then $X_{n}^{\log }$ is naturally isomorphic to the moduli stack $\left(\overline{\mathcal{M}}_{0, n+3}^{\log }\right)_{k} \stackrel{\text { def }}{=} \overline{\mathcal{M}}_{0, n+3}^{\log } \times_{\mathbb{Z}} S$ over S, on which the symmetric group on $n+3$ letters acts naturally. Moreover, it follows from Proposition 3.3, (iii), that $V=V\left(\left\{y_{1}, y_{2}\right\}\right)$, where $y_{1}, y_{2} \in C_{r, n}$ are distinct elements. Thus, there exists a permutation $\alpha \in S_{n+3}$ such that $\alpha\left(V\left(\left\{x_{1}, x_{2}\right\}\right)\right)=V\left(\left\{y_{1}, y_{2}\right\}\right)$. Assertion (iii) in the case where $(g, r)=(0,3)$ now follows immediately.

Next, let us suppose that $(g, r)=(1,1)$. Then $X_{n}^{\log }$ is naturally isomorphic to the fiber product $\overline{\mathcal{M}}_{1, n+1}^{\log } \times \overline{\mathcal{M}}_{1,1}^{\log } S$ over S, where the arrow $S \rightarrow \overline{\mathcal{M}}_{1,1}^{\log }$ is taken to be the classifying morphism $S \rightarrow \overline{\mathcal{M}}_{1,1}^{\log }$ determined by $X^{\log }$ (cf. Definition 2.1). Thus, one verifies easily, by considering the automorphisms of an elliptic curve given by translation by a rational point, that the action of the symmetric group on $n+1$ letters on $\overline{\mathcal{M}}_{1, n+1}^{\log }$ induces an action of the symmetric group on $n+1$ letters on $X_{n}^{\log }$. Moreover, it follows from Proposition 3.3, (ii), that $V=V\left(\left\{y_{1}, y_{2}\right\}\right)$, where $y_{1}, y_{2} \in C_{r, n}$ are arbitrary distinct elements (cf. Definition 2.3). Thus, there exists a permutation $\alpha \in S_{n+1}$ such that $\alpha\left(V\left(\left\{x_{1}, x_{2}\right\}\right)\right)=V\left(\left\{y_{1}, y_{2}\right\}\right)$. Assertion (iii) in the case where $(g, r)=(1,1)$ now follows immediately.

Definition 3.5. Let \mathcal{G} be a semi-graph of anabelioids of pro-l PSC-type.
(i) We shall say that a vertex of \mathcal{G} is a terminal vertex if precisely one node abuts to it.
(ii) We shall say that a node of \mathcal{G} is a terminal node if it abuts to a terminal vertex.
(iii) Write

$$
\operatorname{TerNode}(\mathcal{G}) \subseteq \operatorname{Node}(\mathcal{G})
$$

for the set of terminal nodes of \mathcal{G}.
Proposition 3.6. Let P be a closed point of $X_{n}^{\log }$. Then it holds that

$$
P \text { is a log-full point } \Longleftrightarrow \operatorname{Node}\left(\mathcal{G}_{p}\right)=n .
$$

Proof. This equivalence follows immediately from Definitions 2.1, 2.2, (ii), together with the well-known modular interpretation of the log moduli stacks that appear in the definition of $X_{n}^{\log }$ (where we recall that the \log structure of this \log stack arises from a divisor with normal crossings).

Proposition 3.7. Let P be a log-full point of $X_{n}^{\log }$ and A a log-full subgroup at P (cf. Definition 2.2, (iii)). Then the following hold:
(i) It holds that $\sharp \operatorname{Node}\left(\mathcal{G}_{P}\right)=n$. The underlying semi-graph of \mathcal{G}_{P} is a tree that has precisely $n+1$ vertices, one of which is of type $(g, r)(c f .[\mathrm{CbTpI}]$, Definition 2.3, (iii)); the other vertices are tripods (cf. Notation 1.3, (v)).
(ii) Write $\operatorname{Node}\left(\mathcal{G}_{P}\right)=\left\{e_{1}, \ldots, e_{n}\right\}$ (cf. (i)). Then for each $i \in\{1, \ldots, n\}$, there exists a unique log divisor V_{i} such that there exists an isomorphism of $\mathcal{G}_{V_{i}}$ with $\left(\mathcal{G}_{P}\right)_{\rightsquigarrow \operatorname{Node}\left(\mathcal{G}_{P}\right) \backslash\left\{e_{i}\right\}}(c f .[\mathrm{CbTpI}]$, Definition 2.8) which preserves the respective orderings of cusps. In this situation, we shall say that V_{i} is the log divisor associated to $e_{i} \in \operatorname{Node}\left(\mathcal{G}_{P}\right)$.
(iii) In the situation of (ii),

$$
P=V_{1} \cap \cdots \cap V_{n} \text { and } A=I_{V_{1}} \times \cdots \times I_{V_{n}}
$$

where $I_{V_{i}} \subseteq \Pi_{n}$ is a suitable inertia group associated to V_{i} contained in A. Moreover, for each $i \in\{1, \ldots, n\}$, it holds that $I_{V_{i}} \simeq \mathbb{Z}_{l}$ and $A \simeq \mathbb{Z}_{l}^{\oplus n}$.
(iv) Let m be a positive number; W_{1}, \ldots, W_{m} distinct log divisors such that $P=$ $W_{1} \cap \cdots \cap W_{m}$. Then $m=n$, and $\left\{W_{1}, \ldots, W_{m}\right\}=\left\{V_{1}, \ldots, V_{n}\right\}$ (cf. (iii)).
Proof. Assertion (i) follows immediately from Propositions 2.6, 2.8, and 3.6, together with the observation that a log-full point (cf. Definition 2.2, (ii)) corresponds to an intersection of the sort considered in Proposition 2.10, in the case where $n=m$, and $i_{j}=0$, for $j=0,1, \ldots, m$. Assertion (ii) follows immediately from Proposition 2.9. Assertion (iii) follows from Propositions 2.9 and 2.10, and $[\mathrm{CbTpI}]$, Lemma 5.4, (ii). Assertion (iv) follows immediately from Propositions 2.8, 2.9, 2.10, together with assertion (iii).

Definition 3.8. Let P be a log-full point of $X_{n}^{\log }$ and V_{1}, \ldots, V_{n} the \log divisors such that $P=V_{1} \cap \cdots \cap V_{n}$ (cf. Proposition 3.7, (iv)). We shall say that V_{i} is a terminal divisor of P if there exists a terminal node $e \in \operatorname{TerNode}\left(\mathcal{G}_{P}\right)$ such that V_{i} is the \log divisor associated to $e \in \operatorname{Node}\left(\mathcal{G}_{P}\right)$ (cf. Proposition 3.7, (ii)).

Lemma 3.9. Let P be a log-full point of $X_{n}^{\log }$ and V_{1}, \ldots, V_{n} the log divisors such that $P=V_{1} \cap \cdots \cap V_{n}$ (cf. Proposition 3.7, (iv)). Then the following conditions are equivalent:
(i) V_{i} is a terminal divisor of P.
(ii) V_{i} is a tripodal divisor or a (g, r)-divisor.

Proof. The implication (i) \Longrightarrow (ii) follows from Proposition 3.7, (i), (ii). The implication (ii) \Longrightarrow (i) follows immediately from the various definitions involved.

Theorem 3.10. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right)$; $\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

a smooth log curve of type $\left(g^{\square}, r^{\square}\right)$; $n^{\square} \in \mathbb{Z}_{>1} ; X_{n}^{\log \square}$ the n^{\square}-th log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; \Pi^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X_{n \square}^{\log \square}\right.$) (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow[\rightarrow]{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups. Then the following hold:
(i) $\left(g^{\circ}, r^{\circ}, n^{\circ}\right)=\left(g^{\bullet}, r^{\bullet}, n^{\bullet}\right)$.
(ii) If $\left(g^{\square}, r^{\square}\right) \neq(0,3),(1,1)$, then ϕ induces a bijection between the set of fiber subgroups of a given co-length (cf. [MzTa], Definition 2.3, (iii)) of Π° and the set of fiber subgroups of the same co-length of Π^{\bullet}.
(iii) Suppose that $\left(g^{\square}, r^{\square}\right) \neq(0,3),(1,1)$. Write $\iota_{\Pi}^{\square}: \Pi^{\square} \rightarrow \Pi_{1}^{\square} \times \cdots \times \Pi_{1}^{\square}$ for the outer homomorphism induced by $\iota^{\square}: X_{n}^{\log \square} \rightarrow X^{\log \square} \times_{S} \square \cdots \times_{S} \square X^{\log \square}$ (cf. Definition 2.2, (viii)), where $\Pi_{1}^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro-l }}\left(X^{\log \square}\right.$) (for a suitable choice of basepoint). Then ϕ induces a commutative diagram

where the lower horizontal isomorphism preserves the respective direct product decompositions (but possibly permutes the factors).

Proof. Assertion (i) follows from [HMM], Theorem A, (i). Assertion (ii) follows from [MzTa], Corollary 6.3. Assertion (iii) follows from assertion (ii).

4. Reconstruction of non-degenerate elements of log-full subgroups

We continue with the notation of $\S 3$. In the present $\S 4$, we reconstruct the subset of scheme-theoretically non-degenerate elements (cf. Definition 4.6, (i), below) of a log-full subgroup (cf. Theorem 4.15 below).

Proposition 4.1. Let $m<n$ be an integer, $q: X_{n}^{\log } \rightarrow X_{m}^{\log }$ a projection, V a log divisor of $X_{n}^{\log }$. Write $q: \Pi_{n} \rightarrow \Pi_{m}$ for the outer homomorphism induced by $q: X_{n}^{\log } \rightarrow X_{m}^{\log }$. Suppose that $q(V) \subsetneq X_{m}$. Then the following hold:
(i) $q(V)$ is a log divisor of $X_{m}^{\log }$.
(ii) Let $I_{V} \subseteq \Pi_{n}$ be an inertia group associated to V. Then $q\left(I_{V}\right)\left(\simeq I_{V}\right)$ is an inertia group associated to $q(V)$.

Proof. Assertion (i) follows immediately from the latter portion of Definition 2.2, (vi), together with the well-known modular interpretation of the log moduli stacks that appear in the definition of X_{n}^{log} and X_{m}^{log}. Assertion (ii) follows from [NodNon], Remark 2.4.2, together with the surjectivity portion of [NodNon], Lemma 2.7, (ii).

Proposition 4.2. Let P be a log-full point of $X_{n}^{\log } ; V_{1}, \ldots, V_{n}$ the log divisors such that $P=V_{1} \cap \cdots \cap V_{n} ; A=I_{V_{1}} \times \cdots \times I_{V_{n}}$ the log-full subgroup at P (cf. Proposition 3.7, (iii), (iv)). Then the following hold:
(i) There exists a tripodal divisor in $\left\{V_{1}, \ldots, V_{n}\right\}$. Suppose that V_{1} is a tripodal divisor. Thus, $\mathcal{G}_{V_{1}}$ has precisely two vertices v_{1}, v_{1}^{\prime}, one of which is a tripod. Suppose that v_{1} is a tripod.
(ii) If $r=1$, then there exists a unique (g, r)-divisor in $\left\{V_{1}, \ldots, V_{n}\right\}$. Suppose that V_{n} is this unique (g, r)-divisor.
(iii) In the situation of (i), if $(g, r) \neq(0,3)$, then there exists an $i_{0} \in\{1+r, \ldots, n+$ $r\}$ such that $c_{i_{0}}$ is a cusp of $\left.\mathcal{G}_{V_{1}}\right|_{v_{1}}$ (cf. [CbTpI], Definition 2.1, (iii)). In this case, write $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ for the projection morphism of profile $\left\{i_{0}-r\right\}$ (cf. [MzTa], Definition 2.1, (ii)).
(iv) In the situation of (i), if $(g, r)=(0,3)$, then there exists an $i_{0} \in\{1, \ldots, 3+n\}$ such that $c_{i_{0}}$ is a cusp of $\mathcal{G}_{V_{1}} \mid{ }_{v_{1}}$. In this case, write $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ for the
morphism determined by the morphism $\left(\overline{\mathcal{M}}_{0, n+3}^{\log }\right)_{k} \rightarrow\left(\overline{\mathcal{M}}_{0, n+2}^{\log }\right)_{k}$ obtained by forgetting the i_{0}-th marked point (cf. the proof of Proposition 3.4, (iii)).
(v) In the situation of (iii) or (iv), it holds that $V_{1}^{\prime} \stackrel{\text { def }}{=} p\left(V_{1}\right)=X_{n-1}$ and $V_{i}^{\prime} \stackrel{\text { def }}{=}$ $p\left(V_{i}\right)$ is a \log divisor of $X_{n-1}^{\log }$, for all $i \in\{2, \ldots, n\}$.
(vi) In the situation of (v), it holds that $V_{i}^{\prime} \neq V_{j}^{\prime}$, for all $i \in\{1, \ldots, n-1\}, j \in$ $\{i+1, \ldots, n\}$.
(vii) In the situation of (v), it holds that $p(P)$ is a log-full point of $X_{n-1}^{\log }$.
(viii) In the situation of (iii) or (iv), for arbitrary (g, r), we write, by abuse of notation, $p: \Pi_{n} \rightarrow \Pi_{n-1}$ for the (outer) homomorphism induced by p. Then $A^{\prime} \stackrel{\text { def }}{=} p(A)$ is a log-full subgroup of Π_{n-1}, and we have exact sequences

$$
1 \longrightarrow \Pi_{n / n-1} \stackrel{\text { def }}{=} \operatorname{Ker}(p) \longrightarrow \Pi_{n} \xrightarrow{p} \Pi_{n-1} \longrightarrow 1
$$

$$
1 \longrightarrow I_{V_{1}} \longrightarrow A \xrightarrow{p} A^{\prime} \longrightarrow 1
$$

Proof. Assertions (i), (ii) follow from Proposition 3.7, (i), (ii) (cf. also Lemma 3.9). Assertion (iii) follows from Proposition 3.3, (ii). Assertion (iv) is immediate. Assertion (v) follows from our choice of $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$, together with the terminality of v_{1} (cf. also Proposition 4.1, (i)). Next, we verify assertion (vi). By assertion (v), it holds that $V_{1}^{\prime} \neq V_{j}^{\prime}$, for all $j \in\{2, \ldots, n\}$. Thus, we may assume without loss of generality that $1<i<j$, and that $\mathcal{G}_{V_{i}}$ has precisely two vertices v_{i}, w_{i} such that $c_{i_{0}}$ is a cusp of $\left.\mathcal{G}_{V_{i}}\right|_{v_{i}}$. Let us recall that we have identified $\operatorname{Cusp}\left(\mathcal{G}_{V_{i}}\right), \operatorname{Cusp}\left(\mathcal{G}_{V_{j}}\right)$ with $C_{r, n}$ (cf. Definition 2.2, (v)). Suppose that $V_{i}^{\prime}=V_{j}^{\prime}$. Observe that $c_{i_{0}}$ does not belong to the set of cusps of any tripod (vertex) of $\mathcal{G}_{V_{i}}, \mathcal{G}_{V_{j}}$. Thus, one verifies easily that $\mathcal{G}_{V_{j}}$ has precisely two vertices v_{j}, w_{j} such that

$$
\begin{gathered}
\left(\operatorname{Cusp}\left(\left.\mathcal{G}_{V_{j}}\right|_{v_{j}}\right) \cap \operatorname{Cusp}\left(\mathcal{G}_{V_{j}}\right)\right) \cup\left\{c_{i_{0}}\right\}=\operatorname{Cusp}\left(\left.\mathcal{G}_{V_{i}}\right|_{v_{i}}\right) \cap \operatorname{Cusp}\left(\mathcal{G}_{V_{i}}\right) ; \\
\sharp \operatorname{Cusp}\left(\left.\mathcal{G}_{V_{j}}\right|_{v_{j}}\right)+1=\sharp \operatorname{Cusp}\left(\left.\mathcal{G}_{V_{i}}\right|_{v_{i}}\right) ; \\
\left(\operatorname{Cusp}\left(\left.\mathcal{G}_{V_{i}}\right|_{w_{i}}\right) \cap \operatorname{Cusp}\left(\mathcal{G}_{V_{i}}\right)\right) \cup\left\{c_{i_{0}}\right\}=\operatorname{Cusp}\left(\left.\mathcal{G}_{V_{j}}\right|_{w_{j}}\right) \cap \operatorname{Cusp}\left(\mathcal{G}_{V_{j}}\right) ; \\
\sharp \operatorname{Cusp}\left(\left.\mathcal{G}_{V_{i}}\right|_{w_{i}}\right)+1=\sharp \operatorname{Cusp}\left(\left.\mathcal{G}_{V_{j}}\right|_{w_{j}}\right) ; \\
g\left(v_{i}\right)=g\left(v_{j}\right), g\left(w_{i}\right)=g\left(w_{j}\right),
\end{gathered}
$$

where we write $g\left(v_{(-)}\right), g\left(w_{(-)}\right)$for the "genus" of $\left.\mathcal{G}_{V_{(-)}}\right|_{v_{(-)}},\left.\mathcal{G}_{V_{(-)}}\right|_{w_{(-)}}$(cf. [CbTpI], Definition 2.3, (ii)). But one verifies easily from the correspondence between \log divisors and subsets of $C_{r, n}$ (cf. Remark 2.4), together with the definition of $c_{i_{0}}$ in the statements of assertions (iii), (iv), that this implies that there exists a tripod (vertex) v_{P} of \mathcal{G}_{P} such that

$$
\operatorname{Cusp}\left(\left.\mathcal{G}_{P}\right|_{v_{P}}\right) \cap \operatorname{Cusp}\left(\mathcal{G}_{P}\right)=\left\{c_{i_{0}}\right\} .
$$

On the other hand, this contradicts the terminality of the tripodal divisor V_{1} (cf. Lemma 3.9). In particular, we conclude that $V_{i}^{\prime} \neq V_{j}^{\prime}$. Assertion (vii) follows from assertion (vi). Finally, assertion (viii) follows from assertions (v), (vii), together with [MzTa], Proposition 2.2, (i).

Proposition 4.3. Let P be a log-full point of $X_{n}^{\log }$ and I_{V} an inertia group associated to a log divisor V. Then it holds that

$$
P \in V \Longleftrightarrow \text { there exists a log-full subgroup } A \text { at } P \text { such that } I_{V} \subseteq A \text {. }
$$

Proof. The implication \Longrightarrow follows immediately from Proposition 3.7, (iii), (iv). Thus, it suffices to consider the implication \Longleftarrow. Let V_{1}, \ldots, V_{n} be log divisors such that $P=V_{1} \cap \cdots \cap V_{n}$ (cf. Proposition 3.7, (iii), (iv)). We may assume without loss of generality that V_{1} is a tripodal divisor (cf. Proposition 4.2, (i)). In the following, we consider a projection $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ as in Proposition 4.2, (iii) or (iv), and the corresponding (outer) homomorphism $p: \Pi_{n} \rightarrow \Pi_{n-1}$ of Proposition 4.2, (viii).

Let us first suppose that $p(V)=X_{n-1}$. Then since the generic point of V maps via p to the generic point of $X_{n-1}, I_{V} \subseteq \operatorname{Ker}(p) \cap A=I_{V_{1}}$ (cf. Proposition 4.2 , (viii)). Now observe that since $p(V)=p\left(V_{1}\right)=X_{n-1}, I_{V}$ and $I_{V_{1}}$ may be regarded as cuspidal inertia groups of the smooth \log curve determined by the geometric generic fiber of $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$. In particular, the inclusion $I_{V} \subseteq I_{V_{1}}$ of profnite groups isomorphic to \mathbb{Z}_{l} (cf. Proposition 3.7, (iii)) implies, by [CmbGC], Proposition 1.2, (i), that $P \in V_{1}=V$.

Thus, it suffices to consider the case where $p(V) \neq X_{n-1}$. Then by Proposition 4.1, (i), (ii), $V^{\prime} \stackrel{\text { def }}{=} p(V)$ is a \log divisor of $X_{n-1}^{\log }$, and p induces an isomorphism $I_{V} \xrightarrow{\sim} I_{V^{\prime}}$. Now we apply induction on n. Here, we note that although we have assumed that $n>1$, the assertion corresponding to the implication \Longleftarrow for $n=1$ follows immediately from [CmbGC], Proposition 1.2 , (i). Since $A^{\prime} \stackrel{\text { def }}{=} p(A)$ is a logfull subgroup at $P^{\prime} \stackrel{\text { def }}{=} p(P)$ (cf. Proposition 4.2, (viii)) that contains $I_{V^{\prime}}$, it follows from the induction hypothesis that $P^{\prime}=V_{2}^{\prime} \cap \cdots \cap V_{n}^{\prime} \in V^{\prime}$, where $V_{i}^{\prime} \stackrel{\text { def }}{=} p\left(V_{i}\right)$ and $i \in\{2, \ldots, n\}$. By Proposition 3.7, (iv), it holds that $V^{\prime} \in\left\{V_{2}^{\prime}, \ldots, V_{n}^{\prime}\right\}$, so we may assume without loss of generality that $V^{\prime}=V_{2}^{\prime}$. It follows immediately from the latter portion of Definition 2.2, (vi), together with the well-known modular interpretation of the log moduli stacks that appear in the definition of $X_{n}^{\log }$ and $X_{n-1}^{\log }$, that there exists a \log divisor $W \neq V_{2}$ of $X_{n}^{\log }$ such that $p(W)=V_{2}^{\prime}$ and $(V \subseteq) p^{-1}\left(V_{2}^{\prime}\right)=V_{2} \cup W$. Note that $V \in\left\{V_{2}, W\right\}$. Suppose that $V=W$. Then

$$
I_{W}=I_{V} \subseteq p^{-1} p\left(I_{V}\right)=p^{-1}\left(I_{V^{\prime}}\right)=p^{-1}\left(I_{V_{2}^{\prime}}\right)=I_{V_{1}} \oplus I_{V_{2}},
$$

where the last equality follows from Proposition 4.2, (viii). Now let us consider the stable log curve obtained by restricting $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ to the generic point of V_{2}^{\prime}. This stable log curve has precisely two irreducible components, corresponding to V_{2} and W, whose intersection consists of precisely one node, which we denote by $e_{V_{2} \cap W}$; moreover, V_{1} may be regarded as a cusp of this stable log curve which, since $V_{1} \cap V_{2} \neq \emptyset$, is contained in the irreducible component of the stable log curve corresponding to V_{2}. Write $I_{V_{2} \cap W}$ for the inertia group of $e_{V_{2} \cap W}$ such that

$$
I_{V_{2} \cap W} \subseteq I_{V_{2}} \oplus I_{W}=I_{V_{2}} \oplus I_{V}
$$

Since $\left(I_{V} \subset\right) I_{V_{1}} \oplus I_{V_{2}}$ is an abelian group, it holds that (the cuspidal inertia group) $I_{V_{1}}$ commutes with $I_{V_{2}}$ and $I_{V}=I_{W}$, hence with (the nodal inertia group) $I_{V_{2} \cap W}$. In particular, by [CmbGC], Proposition 1.2, (i), (ii), we obtain a contradiction to our assumption that $V=W$. Thus, $V=V_{2}$, and $P \in V_{2}=V$.

Proposition 4.4. Let V, W be \log divisors and I_{V} an inertia group associated to V. Then it holds that
$W=V \Longleftrightarrow$ there exists an inertia group I_{W} associated to W such that $I_{W}=I_{V}$.
Proof. The implication \Longrightarrow follows immediately from the various definitions involved. Thus, it suffices to consider the implication \Longleftarrow. Recall that it follows from the well-known modular interpretation of the log moduli stacks that appear in the definition of $X_{n}^{\log }$ that there exists a log-full point P such that $P \in V$. Let V_{1}, \ldots, V_{n} be the distinct \log divisors such that $P=V_{1} \cap \cdots \cap V_{n}, V \in\left\{V_{1}, \ldots, V_{n}\right\}$ (cf. Proposition 3.7, (iii), (iv)). Thus, we may assume without loss of generality that $I_{V}=I_{V_{i}} \subseteq A$ for some $i \in\{1, \ldots, n\}$. In the following, we assume that there exists an inertia group I_{W} associated to the \log divisor W such that $I_{W}=I_{V}$ and consider a projection $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ as in Proposition 4.2, (iii) or (iv), and the corresponding (outer) homomorphism $p: \Pi_{n} \rightarrow \Pi_{n-1}$ of Proposition 4.2, (viii).

Let us first suppose that $p(V)=X_{n-1}$. Then since the generic point of V maps via p to the generic point of $X_{n-1}, I_{V} \subseteq \operatorname{Ker}(p) \cap A=I_{V_{1}}$ (cf. Proposition 4.2, (viii)). Since $I_{W}=I_{V} \subseteq \operatorname{Ker}(p)$, it follows from Propositions 3.7, (iii); 4.1, (i), (ii), that $p(W)=X_{n-1}$. Now observe that since $p(V)=p(W)=p\left(V_{1}\right)=X_{n-1}, I_{V}$, I_{W}, and $I_{V_{1}}$ may be regarded as cuspidal inertia groups of the smooth log curve determined by the geometric generic fiber of $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$. In particular, the equality and inclusion $I_{W}=I_{V} \subseteq I_{V_{1}}$ of profinite groups isomorphic to \mathbb{Z}_{l} (cf. Proposition 3.7, (iii)) implies, by [CmbGC], Proposition 1.2, (i), that $W=V=V_{1}$.

Thus, it suffices to consider the case where $p(V) \neq X_{n-1}$. By Proposition 4.1, (i), (ii), $V^{\prime} \stackrel{\text { def }}{=} p(V)$ is a log divisor of $X_{n-1}^{\log }$, and p induces an isomorphism $I_{V} \xrightarrow{\sim} I_{V^{\prime}}$. If $p(W)=X_{n-1}$, then since the generic point of W maps via p to the generic point of X_{n-1}, it follows that $I_{W}=I_{V} \subseteq \operatorname{Ker}(p)$, in contradiction to the existence of the isomorphism $I_{V} \xrightarrow{\sim} I_{V^{\prime}}$ (cf. Proposition 3.7, (iii)). Thus, we conclude that $p(W) \neq X_{n-1}$ and hence, by Proposition 4.1, (i), (ii), that $W^{\prime} \stackrel{\text { def }}{=} p(W)$ is a \log divisor of $X_{n-1}^{\log }$, and $I_{W} \xrightarrow{\sim} I_{W^{\prime}}$. Now we apply induction on n. Here, we note that although we have assumed that $n>1$, the assertion corresponding to the implication \Longleftarrow for $n=1$ follows immediately from [CmbGC], Proposition 1.2 , (i). Then since $I_{W^{\prime}}=I_{V^{\prime}}$, it follows from the induction hypothesis that $W^{\prime}=V^{\prime}$. Now suppose that $W \neq V$. Then it follows immediately from the latter portion of Definition 2.2, (vi), together with the well-known modular interpretation of the log moduli stacks that appear in the definition of $X_{n}^{\log }$ and $X_{n-1}^{\log }$, that the stable log curve obtained by restricting $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ to the generic point of $W^{\prime}=V^{\prime}$ has precisely two irreducible components, corresponding to W and V, whose intersection consists of precisely one node. Thus, since $I_{W}=I_{V}$, we conclude from [CmbGC], Proposition 1.2, (i), that $W=V$.

Proposition 4.5. Let $P^{\dagger}, P^{\ddagger}$ be log-full points of $X_{n}^{\log }$ and A^{\dagger} a log-full subgroup at P^{\dagger}. Then it holds that

$$
P^{\dagger}=P^{\ddagger} \Longleftrightarrow \text { there exists a log-full subgroup } A^{\ddagger} \text { at } P^{\ddagger} \text { such that } A^{\dagger}=A^{\ddagger} .
$$

In particular, the assignment $P^{\dagger} \mapsto\left[A^{\dagger}\right]$ (where " $[(-)]$ " denotes the Π_{n}-conjugacy class of "(-)") determines a natural bijection

$$
\{\text { log-full points }\} \xrightarrow{\sim}\left\{\Pi_{n} \text {-conjugacy classes of log-full subgroups }\right\} \text {. }
$$

Proof. The assertion of the second display follows from the assertion of the first display. Let us prove the assertion of the first display. The implication \Longrightarrow is immediate. Thus, it suffices to prove the implication \Longleftarrow. Suppose that $A^{\dagger}=A^{\ddagger}$. Let V_{1}, \ldots, V_{n} be log divisors such that $P^{\dagger}=V_{1} \cap \cdots \cap V_{n}$; write $A^{\dagger}=I_{V_{1}} \times$ $\cdots \times I_{V_{n}}$ (cf. Proposition 3.7, (iii), (iv)). In particular, for each $j \in\{1, \ldots, n\}$, $I_{V_{j}} \subseteq A^{\dagger}=A^{\ddagger}$. In particular, it follows from Proposition 4.3 that $P^{\ddagger} \in V_{j}$. Thus, $P^{\ddagger} \in V_{1} \cap \cdots \cap V_{n}=P^{\dagger}$ (cf. the notational conventions of Definition 2.2, (ii)), i.e., $P^{\dagger}=P^{\ddagger}$, as desired.

In the remainder of the present $\S 4$, we shall apply the notational conventions introduced in the statement of Proposition 4.2 (cf, especially, Proposition 4.2, (i), (ii)).

Definition 4.6. Let $\alpha \in A$ and

$$
A=I_{V_{1}} \times \cdots \times I_{V_{n}}: \alpha \mapsto\left(a_{1}, \ldots, a_{n}\right)
$$

(i) We shall say that α is scheme-theoretically non-degenerate if $a_{i} \neq 1_{A}$ for each $i \in\{1, \ldots, n\}$.
(ii) We shall say that α is group-theoretically non-degenerate if $Z_{\Pi_{n}}(\alpha)$ is an abelian group.
Theorem 4.7. It holds that
$\{$ scheme-theoretically non-degenerate elements of $A\}$
$=\{$ group-theoretically non-degenerate elements of $A\}$.

Proof. When $r \neq 1$, this follows from Propositions 4.9, 4.12, below. When $r=1$, this follows from Propositions 4.9, 4.12, and 4.14, below.

Lemma 4.8. It holds that

$$
N_{\Pi_{n}}(A)=A,
$$

i.e., every log-full subgroup of Π_{n} is normally terminal in Π_{n}.

Proof. In the following, we consider the projection $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ of Proposition 4.2, (iii) or (iv), and the associated (outer) homomorphism $p: \Pi_{n} \rightarrow \Pi_{n-1}$ of Proposition 4.2, (viii).

We apply induction on n. Here, we note that although we have assumed that $n>1$, the analogous assertion for $n=1$ follows immediately from [CmbGC], Proposition 1.2, (ii). By definition, $N_{\Pi_{n}}(A) \supseteq A$. Let $\alpha \in N_{\Pi_{n}}(A)$. Since $\alpha A \alpha^{-1}=$ A, it follows that $p(\alpha) A^{\prime} p(\alpha)^{-1}=A^{\prime}$, where we recall the log-full subgroup $A^{\prime}=$ $p(A)$ of Π_{n-1} discussed in Proposition 4.2, (viii). Then it follows from the induction hypothesis that A^{\prime} is normally terminal. Thus, $p(\alpha) \in A^{\prime}$, i.e., $p\left(N_{\Pi_{n}}(A)\right) \subseteq A^{\prime}$. Since $p\left(N_{\Pi_{n}}(A)\right) \supseteq p(A)=A^{\prime}$, it follows that $p\left(N_{\Pi_{n}}(A)\right)=A^{\prime}$.

Next, we observe that by Proposition 4.2, (viii), $N_{\Pi_{n}}(A) \cap \Pi_{n / n-1} \supseteq A \cap$ $\Pi_{n / n-1}=I_{V_{1}}$. Let $\alpha \in N_{\Pi_{n}}(A) \cap \Pi_{n / n-1}$. Since $\alpha A \alpha^{-1}=A$, and $\Pi_{n / n-1}$ is normal in Π_{n} (cf. Proposition 4.2, (viii)), it follows that $\alpha I_{V_{1}} \alpha^{-1}=I_{V_{1}} \subseteq A$. On the other hand, let us observe that V_{1} determines a cusp of the smooth log curve obtained by restricting $p: X_{n}^{\log } \rightarrow X_{n-1}^{\log }$ to the generic point of X_{n-1} (cf. Proposition 4.2, (v)). Thus, we conclude from [CmbGC], Proposition 1.2, (ii), that $\alpha \in N_{\Pi_{n / n-1}}\left(I_{V_{1}}\right)=I_{V_{1}}$, i.e., that $N_{\Pi_{n}}(A) \cap \Pi_{n / n-1}=I_{V_{1}}$.

It follows from the above discussion that we have an exact sequence

$$
1 \longrightarrow I_{V_{1}} \longrightarrow N_{\Pi_{n}}(A) \xrightarrow{p} A^{\prime} \longrightarrow 1
$$

By the five lemma (cf. Proposition 4.2, (viii)), it thus follows that $N_{\Pi_{n}}(A)=A$.
Proposition 4.9. Let $\left(a_{1}, \ldots, a_{n}\right) \in I_{V_{1}} \times \cdots \times I_{V_{n}}=A$. If $a_{1}, \ldots, a_{n} \neq 1_{A}$, then $Z_{\Pi_{n}}\left(a_{1} \cdots a_{n}\right)=A$, hence, in particular, is an abelian group.
Proof. Let $X_{n+1}^{\log } \rightarrow X_{n}^{\log }$ be the projection morphism of profile $\{n+1\}$. This projection induces an exact sequence

$$
1 \longrightarrow \Pi_{n+1 / n} \longrightarrow \Pi_{n+1} \longrightarrow \Pi_{n} \longrightarrow 1
$$

which gives rise to an outer representation $\rho: \Pi_{n} \rightarrow \operatorname{Out}\left(\Pi_{n+1 / n}\right)$. Recall that ρ is injective (cf. [Asd], the Remark following the proof of Theorem 1). Moreover, recall that there exists an isomorphism $\Pi_{\mathcal{G}_{P}} \xrightarrow{\sim} \Pi_{n+1 / n}$ such that ρ determines an isomorphism

$$
A \xrightarrow{\sim} \operatorname{Dehn}\left(\mathcal{G}_{P}\right)
$$

(cf. [CbTpI], Definition 4.4; [CbTpI], Proposition 5.6, (ii)), and, moreover, it holds that

$$
\operatorname{Aut}\left(\mathcal{G}_{P}\right)=N_{\mathrm{Out}^{\mathrm{C}}\left(\Pi_{n+1 / n}\right)}\left(\operatorname{Dehn}\left(\mathcal{G}_{P}\right)\right)
$$

(cf. [CbTpI], Theorem 5.14, (iii)).
Since $A \simeq \mathbb{Z}_{l}^{\oplus n}$ (cf. Proposition 3.7, (iii)) is an abelian group, it suffices to verify that $Z_{\Pi_{n}}\left(a_{1} \cdots a_{n}\right)=A$. Since A is an abelian group, and $a_{1} \cdots a_{n} \in A \subseteq \Pi_{n}$, it follows that $Z_{\Pi_{n}}\left(a_{1} \cdots a_{n}\right) \supseteq A$. By [NodNon], Theorem A (cf. also [NodNon], Remark 2.4.2), and $[\mathrm{CbTpI}]$, Corollary 5.9, (ii), it follows that $\rho\left(Z_{\Pi_{n}}\left(a_{1} \cdots a_{n}\right)\right) \subseteq$ $\operatorname{Aut}\left(\mathcal{G}_{P}\right)$. Thus, we conclude that

$$
\begin{gathered}
\rho\left(Z_{\Pi_{n}}\left(a_{1} \cdots a_{n}\right)\right) \subseteq \operatorname{Aut}\left(\mathcal{G}_{P}\right) \cap \rho\left(\Pi_{n}\right)=N_{\mathrm{Out}^{\mathrm{C}}\left(\Pi_{n+1 / n}\right)}\left(\operatorname{Dehn}\left(\mathcal{G}_{P}\right)\right) \cap \rho\left(\Pi_{n}\right) \\
=N_{\rho\left(\Pi_{n}\right)}\left(\operatorname{Dehn}\left(\mathcal{G}_{P}\right)\right)=N_{\rho\left(\Pi_{n}\right)}(\rho(A))=\rho\left(N_{\Pi_{n}}(A)\right)
\end{gathered}
$$

In particular, $Z_{\Pi_{n}}\left(a_{1} \cdots a_{n}\right) \subseteq N_{\Pi_{n}}(A)=A$ (cf. Lemma 4.8).
Definition 4.10. Let \mathcal{G} be a semi-graph of anabelioids of pro-l PSC-type. Write \mathbb{G} for the underlying semi-graph of \mathcal{G}. Suppose that \mathbb{G} is a tree. Let $e_{1}, e_{2} \in \operatorname{Edge}(\mathcal{G})$; b_{1}, b_{1}^{\prime} the two branches of $e_{1} ; b_{2}, b_{2}^{\prime}$ the two branches of e_{2}. We suppose that $\mathbb{G}_{\nexists b_{1}} \cap \mathbb{G}_{\not \supset b_{2}}=\emptyset$ (cf. Definition 2.5). Write \mathbb{H} for the semi-graph obtained by considering the "intersection" (in the evident sense) of $\mathbb{G}_{\ni b_{1}}$ and $\mathbb{G}_{\ni b_{2}}$. Then we define the semi-graph of anabelioids of pro-l PSC-type

$$
\mathcal{G}_{b_{1} \bigvee b_{2}}
$$

(obtained by "switching" b_{1} and b_{2}) as follows. We take the underlying semi-graph $\mathbb{G}_{b_{1} \curlyvee \gamma b_{2}}$ of $\mathcal{G}_{b_{1} \vee b_{2}}$ to be the semi-graph obtained by "gluing" \mathbb{H} to $\mathbb{G}_{\nexists b_{1}}$ and $\mathbb{G}_{\nexists b_{2}}$ in the following way:

- we glue the branch of \mathbb{H} corresponding to b_{1} and the branch of $\mathbb{G}_{\nexists b_{2}}$ corresponding to b_{2}^{\prime} along a single edge (whose branches correspond to the two branches that are glued to one another);
- we glue the branch of \mathbb{H} corresponding to b_{2} and the branch of $\mathbb{G}_{\nexists b_{1}}$ corresponding to b_{1}^{\prime} along a single edge (whose branches correspond to the two branches that are glued to one another).

Then the various connected anabelioids that constitute \mathcal{G} naturally determine a semi-graph of anabelioids of pro-l PSC-type $\mathcal{G}_{b_{1} \upharpoonright b_{2}}$ whose underlying semi-graph is the semi-graph $\mathbb{G}_{b_{1} \vee b_{2}}$.

Proposition 4.11. Suppose that $r \neq 1$ (resp. $r=1$). Let $i \in\{1, \ldots, n\}$ (resp. $i \in\{1, \ldots, n-1\})$. Then there exists a \log divisor $H \neq V_{i}$ such that

$$
V_{1} \cap \cdots \cap V_{i-1} \cap H \cap V_{i+1} \cap \cdots \cap V_{n}
$$

is a log-full point $(\neq P)$.
Proof. Write \mathbb{G} for the underlying semi-graph of $\mathcal{G} \stackrel{\text { def }}{=} \mathcal{G}_{P}$. It follows from Proposition 3.7, (ii), that there exists a node $e \in \operatorname{Node}(\mathcal{G})$ such that V_{i} is the \log divisor associated to $e \in \operatorname{Node}(\mathcal{G})$. Let $w_{1}, w_{2} \in \operatorname{Vert}(\mathcal{G})$ be distinct vertices such that e abuts to w_{1}, w_{2}.

First, let us suppose that w_{1}, w_{2} are tripods. Then let us observe that there exist distinct elements

$$
y_{1}, z_{1}, y_{2}, z_{2} \in\left(C_{r, n} \coprod \operatorname{Node}(\mathcal{G})\right) \backslash\{e\}
$$

such that (suitable branches of) e, y_{1}, z_{1} give rise to the three cusps of $\left.\mathcal{G}\right|_{w_{1}}$, and (suitable branches of) e, y_{2}, z_{2} give rise to the three cusps of $\left.\mathcal{G}\right|_{w_{2}}$.

Let b_{1} be the branch of y_{1} that abuts to $w_{1} ; b_{2}$ the branch of y_{2} that abuts to $w_{2} ; \mathcal{G}^{\prime} \stackrel{\text { def }}{=}(\mathcal{G})_{b_{1} \curlyvee b_{2}}$ (cf. Definition 4.10). Then it follows immediately from the definitions (Definitions 2.3, 4.10), together with the fact that

$$
\left(\operatorname{Cusp}\left(\mathbb{G}_{\ni b_{1}}\right) \cap \operatorname{Cusp}\left(\mathbb{G}_{\ni b_{2}}\right) \cap C_{r, n}\right) \subsetneq C_{r, n}
$$

(cf. Definition 2.3, Remark 2.4), that there exists a \log divisor $H \neq V_{i}$ such that H is the \log divisor associated to the element $e^{\prime} \in \operatorname{Node}\left(\mathcal{G}^{\prime}\right)$ corresponding to $e \in \operatorname{Node}(\mathcal{G})$ and $V_{1} \cap \cdots \cap V_{i-1} \cap H \cap V_{i+1} \cap \cdots \cap V_{n}$ is a log-full point $P^{\prime} \neq P$ such that $\mathcal{G}_{P^{\prime}}=\mathcal{G}^{\prime}$. (Here, we observe that for $j \in\{1, \ldots, n\} \backslash\{i\}, V_{j}$ may be regarded as the \log divisor associated to a suitable choice of element $e_{j}^{\prime} \in \operatorname{Node}\left(\mathcal{G}^{\prime}\right)$ corresponding to the element $e_{j} \in \operatorname{Node}(\mathcal{G})$ to which the \log divisor V_{j} is associated.) This completes the proof of Proposition 4.11 in the case where w_{1}, w_{2} are tripods.

Thus, we may assume without loss of generality that w_{2} is not a tripod. Then it follows from Proposition 3.7, (i), that w_{1} is a tripod, and w_{2} is of type $(g, r) \neq(0,3)$. Next, let us observe that $r \neq 1$. Indeed, if $r=1$, then it follows immediately from the fact that w_{2} is of type $(g, r) \neq(0,3)$, together with the definition of V_{n} (cf. Proposition 4.2, (ii)), that $V_{i}=V_{n}$. This contradicts our assumption that $i \leq n-1$ if $r=1$. Thus, in summary, we may assume that w_{1} is a tripod, w_{2} is of type $(g, r) \neq(0,3)$, and $r \neq 1$.

Next, let us observe that there exist distinct elements

$$
y^{\dagger}, y^{\ddagger}, y^{*}, y_{1}, \ldots, y_{r-2} \in\left(C_{r, n} \coprod \operatorname{Node}(\mathcal{G})\right) \backslash\{e\}
$$

such that (suitable branches of) $e, y^{\dagger}, y^{\ddagger}$ give rise to the three cusps of $\left.\mathcal{G}\right|_{w_{1}}$, and (suitable branches of) $e, y^{*}, y_{1}, \ldots, y_{r-2}$ give rise to the r cusps of $\left.\mathcal{G}\right|_{w_{2}}$. (Here, we remark that since $r \neq 0,1$, it follows that $r+1 \geq 3$.)

Let b^{\dagger} be the branch of y^{\dagger} that abuts to $w_{1} ; b^{\ddagger}$ the branch of y^{\ddagger} that abuts to w_{1}; b^{*} the branch of y^{*} that abuts to w_{2}. Then observe that, after possibly permuting the superscripts " \dagger " and " \ddagger ", we may assume that $\operatorname{Cusp}\left((\mathbb{G})_{\ni b^{\ddagger}}\right) \supseteq\left\{c_{1}, \ldots, c_{r}\right\}$.

Let $\mathcal{G}^{\prime} \stackrel{\text { def }}{=}(\mathcal{G})_{b^{\dagger} \curlyvee b^{*}}$. Then it follows immediately from the definitions (cf. the choice of b_{1}; Definitions 2.3, 4.10), together with the fact that

$$
\left(\operatorname{Cusp}\left(\mathbb{G}_{\ni b^{\dagger}}\right) \cap \operatorname{Cusp}\left(\mathbb{G}_{\ni b^{*}}\right) \cap C_{r, n}\right) \subsetneq C_{r, n}
$$

(cf. Definition 2.3, Remark 2.4), that there exists a \log divisor $H \neq V_{i}$ such that H is the \log divisor associated to the element $e^{\prime} \in \operatorname{Node}\left(\mathcal{G}^{\prime}\right)$ corresponding to $e \in \operatorname{Node}(\mathcal{G})$ and $V_{1} \cap \cdots \cap V_{i-1} \cap H \cap V_{i+1} \cap \cdots \cap V_{n}$ is a log-full point $P^{\prime} \neq P$ such that $\mathcal{G}_{P^{\prime}}=\mathcal{G}^{\prime}$. (Here, we observe that for $j \in\{1, \ldots, n\} \backslash\{i\}, V_{j}$ may be regarded as the \log divisor associated to a suitable choice of element $e_{j}^{\prime} \in \operatorname{Node}\left(\mathcal{G}^{\prime}\right)$ corresponding to the element $e_{j} \in \operatorname{Node}(\mathcal{G})$ to which the \log divisor V_{j} is associated.)

Proposition 4.12. Suppose that $r \neq 1$ (resp. $r=1$). Let $i \in\{1, \ldots, n\}$ (resp. $i \in$ $\{1, \ldots, n-1\})$ and $\left(a_{1}, \ldots, a_{n}\right) \in I_{V_{1}} \times \cdots \times I_{V_{n}}=A$. Then $Z_{\Pi_{n}}\left(a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n}\right)$ is a non-abelian group.

Proof. By Proposition 4.11, there exists a \log divisor $H \neq V_{i}$ such that $P^{\prime}=$ $V_{1} \cap \cdots \cap V_{i-1} \cap H \cap V_{i+1} \cap \cdots \cap V_{n}$ is a log-full point. Write $A^{\prime}=I_{V_{1}} \times \cdots \times I_{V_{i-1}} \times$ $I_{H} \times I_{V_{i+1}} \times \cdots \times I_{V_{n}}$. Since

$$
a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in A \cap A^{\prime}
$$

and A, A^{\prime} are abelian groups, it follows that

$$
A, A^{\prime} \subseteq Z_{\Pi_{n}}\left(a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n}\right)
$$

Since A, A^{\prime} are distinct log-full subgroups (cf. Proposition 4.5) and contained in $Z_{\Pi_{n}}\left(a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n}\right)$, by Lemma 4.8, it follows that $Z_{\Pi_{n}}\left(a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n}\right)$ is a non-abelian group.

Proposition 4.13. If $r=1$, then there exists an element $i \in\{1, \ldots, n\}$ such that the projection morphism $q: X_{n}^{\log } \rightarrow X^{\log }$ of co-profile $\{i\}$ (cf. [MzTa], Definition 2.1, (ii)) induces an isomorphism $V_{1} \cap \cdots \cap V_{n-1} \xrightarrow{\sim} X$.

Proof. Let w be the unique vertex of \mathcal{G}_{P} of genus g (cf. Proposition 3.7, (i)). (Note that since $r=1$, it holds that $g \neq 0$.) Then since $r=1$, it follows immediately from Propositions 3.7, (i); 4.2, (ii), that there exist a unique vertex $u \in \operatorname{Vert}\left(\mathcal{G}_{P}\right)$ and a unique node $e \in \operatorname{Node}\left(\mathcal{G}_{P}\right)$ (corresponding to V_{n}) such that e abuts to w, u, and, moreover, u is a tripod. Next, let us observe that there exist distinct elements $y^{\dagger}, y^{\ddagger} \in\left(C_{r, n} \coprod \operatorname{Node}\left(\mathcal{G}_{P}\right)\right) \backslash\{e\}$ such that (suitable branches of) $e, y^{\dagger}, y^{\ddagger}$ give rise to the three cusps of $\left.\mathcal{G}_{P}\right|_{u}$. Let b^{\dagger} be the branch of y^{\dagger} that abuts to u, b^{\ddagger} the branch of y^{\ddagger} that abuts to u. Write \mathbb{G}_{P} for the underlying semi-graph of \mathcal{G}_{P}. Thus, $y^{\dagger} \in$ Edge $\left(\left(\mathbb{G}_{P}\right)_{\ni b^{\ddagger}}\right), y^{\ddagger} \in \operatorname{Edge}\left(\left(\mathbb{G}_{P}\right)_{\ni b^{\dagger}}\right)$. Then observe that, after possibly permuting the superscripts " \dagger " and " \ddagger ", we may assume that $c_{1} \in \operatorname{Cusp}\left(\left(\mathbb{G}_{P}\right)_{\ni b} \ddagger\right) \backslash\left\{y^{\ddagger}\right\}$.

Note that since, whenever $y^{\ddagger} \notin C_{r, n}$, the genus portion of the type (i.e., " (g, r) ") of the semi-graph of anabelioids of PSC-type $\left(\mathcal{G}_{P}\right)_{\not \supset b^{\ddagger}}$ is $=0$ (cf. Proposition 3.7, (i)), the fact that $c_{1} \in \operatorname{Cusp}\left(\left(\mathbb{G}_{P}\right)_{\ni b^{\ddagger}}\right) \backslash\left\{y^{\ddagger}\right\}$ implies that

$$
\text { either } y^{\ddagger} \in\left(\operatorname{Cusp}\left(\left(\mathbb{G}_{P}\right)_{\ni b^{\dagger}}\right) \cap C_{r, n}\right) \backslash\left\{c_{1}\right\} \text { or } \operatorname{Cusp}\left(\left(\mathbb{G}_{P}\right)_{\not \supset b^{\ddagger}}\right) \cap C_{r, n} \neq \emptyset .
$$

In particular, since $y^{\dagger} \neq y^{\ddagger}$ and, whenever $y^{\ddagger} \notin C_{r, n}, \operatorname{Cusp}\left(\left(\mathbb{G}_{P}\right)_{\ngtr b^{\ddagger}}\right) \cap C_{r, n} \subseteq$ $\operatorname{Cusp}\left(\left(\mathbb{G}_{P}\right)_{\ni b^{\dagger}}\right) \backslash\left\{y^{\dagger}\right\}$, there exists an element $i \in\{1, \ldots, n\}$ such that $x_{i} \in$ $\operatorname{Cusp}\left(\left(\mathbb{G}_{P}\right)_{\ni b^{\dagger}}\right) \backslash\left\{y^{\dagger}\right\}$. Now it follows immediately from our choice of i, together with the fact that the divisor V_{n} corresponds to the node e (cf. Propositions 3.7, (ii);
4.2, (ii)), that the projection morphism $q: X_{n}^{\log } \rightarrow X^{\log }$ of co-profile $\{i\}$ induces an isomorphism $q: V_{1} \cap \cdots \cap V_{n-1} \xrightarrow{\sim} X$, as desired.
Proposition 4.14. Let $\left(a_{1}, \ldots, a_{n}\right) \in I_{V_{1}} \times \cdots \times I_{V_{n}}=A$. If $r=1$, then $Z_{\Pi_{n}}\left(a_{1} \cdots a_{n-1}\right)$ is a non-abelian group.

Proof. By Proposition 4.13, there exists an element $i \in\{1, \ldots n\}$ such that the projection morphism $q: X_{n}^{\log } \rightarrow X^{\log }$ of co-profile $\{i\}$ induces an isomorphism $V_{1} \cap \cdots \cap V_{n-1} \xrightarrow{\sim} X$. By abuse of notation, we write $q: \Pi_{n} \rightarrow \Pi_{1}$ for the outer homomorphism induced by q. Write $V_{1}^{\log } \cap \cdots \cap V_{n-1}^{\log }$ for the log scheme obtained by restricting the \log structure of $X_{n}^{\log }$ to the reduced closed subscheme of X_{n} determined by $V_{1} \cap \cdots \cap V_{n-1} ; V_{j}^{\log }$, where $j \in\{1, \ldots, n-1\}$, for the log scheme obtained by restricting the \log structure of $X_{n}^{\log }$ to the reduced closed subscheme of X_{n} determined by V_{j}. Then it follows immediately that the morphism $V_{1}^{\log } \cap \cdots \cap$ $V_{n-1}^{\log } \rightarrow V_{j}^{\log } \rightarrow X^{\log }$ induced by $q: X_{n}^{\log } \rightarrow X^{\log }$ determines (for suitable choices of basepoints) homomorphisms of profinite groups

$$
\pi_{1}^{\text {pro-l }}\left(V_{1}^{\log } \cap \cdots \cap V_{n-1}^{\log }\right) \rightarrow \pi_{1}^{\text {pro-l }}\left(V_{j}^{\log }\right) \rightarrow \Pi_{n} \rightarrow \Pi_{1}
$$

Note that it follows immediately from the definition of $I_{V_{j}}$ as an inertia group (cf. Proposition 3.7, (iii)) that, for suitable choices of basepoints in the $\pi_{1}(-)$'s of the above display, the image of $\pi_{1}^{\text {pro-l }}\left(V_{j}^{\log }\right)$ in Π_{n}, hence also the image of $\pi_{1}^{\text {pro-l }}\left(V_{1}^{\log } \cap \cdots \cap V_{n-1}^{\log }\right)$ in Π_{n}, is contained in $Z_{\Pi_{n}}\left(I_{V_{j}}\right) \subset \Pi_{n}$. In particular, we obtain homomorphisms of profinite groups

$$
\pi_{1}^{\text {pro-l }}\left(V_{1}^{\log } \cap \cdots \cap V_{n-1}^{\log }\right) \rightarrow D_{V_{1}} \cap \cdots \cap D_{V_{n-1}} \hookrightarrow \Pi_{n} \rightarrow \Pi_{1},
$$

where $D_{V_{j}} \stackrel{\text { def }}{=} Z_{\Pi_{n}}\left(I_{V_{j}}\right)$ is the decomposition group associated to V_{j} determined by $I_{V_{j}}$ (cf. [Hsh], Corollary 2). Next, observe that it follows from the well-known modular interpretation of the log moduli stacks involved (cf. Definition 2.2, (vi)) that $V_{1}^{\log } \cap \cdots \cap V_{n-1}^{\log } \rightarrow X^{\log }$ is of type $\mathbb{N}^{\oplus n-1}$ (cf. [Hsh], Definition 6). Since $V_{1}^{\log } \cap \cdots \cap V_{n-1}^{\log } \rightarrow X^{\log }$ is of type $\mathbb{N}^{\oplus n-1}$, one verifies immediately that the composite $\pi_{1}^{\text {pro-l }}\left(V_{1}^{\log } \cap \cdots \cap V_{n-1}^{\log }\right) \rightarrow \Pi_{1}$ is a surjection. In particular, the composite $D_{V_{1}} \cap \cdots \cap D_{V_{n-1}} \hookrightarrow \Pi_{n} \rightarrow \Pi_{1}$ is a surjection, i.e., $q\left(D_{V_{1}} \cap \cdots \cap D_{V_{n-1}}\right)=\Pi_{1}$. Thus, it follows immediately from the definitions that

$$
\begin{aligned}
& \Pi_{1}=q\left(D_{V_{1}} \cap \cdots \cap D_{V_{n-1}}\right)=q\left(Z_{\Pi_{n}}\left(I_{V_{1}}\right) \cap \cdots \cap Z_{\Pi_{n}}\left(I_{V_{n-1}}\right)\right) \\
& \subseteq q\left(Z_{\Pi_{n}}\left(a_{1}\right) \cap \cdots \cap Z_{\Pi_{n}}\left(a_{n-1}\right)\right) \subseteq q\left(Z_{\Pi_{n}}\left(a_{1} \cdots a_{n-1}\right)\right) \subseteq \Pi_{1} .
\end{aligned}
$$

In particular, $q\left(Z_{\Pi_{n}}\left(a_{1} \cdots a_{n-1}\right)\right)=\Pi_{1}$, hence also $Z_{\Pi_{n}}\left(a_{1} \cdots a_{n-1}\right)$, is a nonabelian group.

Theorem 4.15. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right) ;\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

a smooth log curve of type $\left(g^{\square}, r^{\square}\right)$; $n^{\square} \in \mathbb{Z}_{>1} ; X_{n}^{\log \square}$ the n^{\square}-th log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; ~ \Pi \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X_{n}^{\log \square}\right.$) (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups; A° a log-full subgroup of Π°. We suppose that $r^{\square}>0$, and that $A \bullet \stackrel{\text { def }}{=} \phi\left(A^{\circ}\right)$ is a log-full subgroup of Π^{\bullet}. Then ϕ induces a bijection between the set of scheme-theoretically non-degenerate elements (cf. Definition 4.6, (i)) of A° and the set of scheme-theoretically non-degenerate elements of A^{\bullet}.

Proof. This follows immediately from Theorem 4.7.

5. Reconstruction of log divisors

We continue with the notation of $\S 4$. In the present $\S 5$, we reconstruct the set of inertia groups associated to log divisors (cf. Theorem 5.2 below).
Lemma 5.1. The following hold:
(i) There exists a unique collection of subgroups $B_{1}^{\dagger}, \ldots, B_{n}^{\dagger} \subseteq A$ such that the following hold:
(a) $\operatorname{dim}_{\mathbb{Q}_{l}}\left(B_{i}^{\dagger} \otimes \mathbb{Q}_{l}\right)=n-1$, for each $i \in\{1, \ldots, n\}$.
(b) For each $i \in\{1, \ldots, n\}$, no element of B_{i}^{\dagger} is (group-theoretically) nondegenerate.
(c) $B_{i}^{\dagger}=A \cap\left(B_{i}^{\dagger} \otimes \mathbb{Q}_{l}\right) \subset A \otimes \mathbb{Q}_{l}$, for all $i \in\{1, \ldots, n\}$.
(ii) In the situation of (i), $\left\{B_{i}^{\dagger} \mid i \in\{1, \ldots, n\}\right\}=\left\{B_{j} \stackrel{\text { def }}{=} \prod_{m \in\{1, \ldots, n\} \backslash\{j\}} I_{V_{m}} \mid\right.$ $j \in\{1, \ldots, n\}\}$.
(iii) In the situation of (i), $\left\{I_{V_{1}}, \ldots, I_{V_{n}}\right\}=\left\{\bigcap_{m \in\{1, \ldots, n\} \backslash\{j\}} B_{m}^{\dagger} \mid j \in\{1, \ldots, n\}\right\}$.

Proof. For $a \in A$, we shall write

$$
J(a) \stackrel{\text { def }}{=}\left\{m \in\{1, \ldots, n\} \mid a \notin B_{j}\right\}
$$

Observe that if $a_{1}, a_{2} \in A$ are such that $J\left(a_{1}\right), J\left(a_{2}\right) \neq \emptyset$, and $J\left(a_{1}\right) \cap J\left(a_{2}\right)=$ \emptyset, then there exists an element $\lambda \in \mathbb{Z}_{l}$ such that $a_{1} a_{2}^{\lambda}$ is non-degenerate. Now assertions (i), (ii) follow the definitions, together with this observation. Assertion (iii) follows immediately from assertion (ii).

Theorem 5.2. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right)$; $\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

a smooth log curve of type $\left(g^{\square}, r^{\square}\right)$; $n^{\square} \in \mathbb{Z}_{>1} ; X_{n}^{\log \square}$ the n^{\square}-th log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; \Pi^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X_{n}^{\log \square}\right.$) (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups. We suppose that $r^{\square}>0$, and that ϕ induces a bijection between the set of log-full subgroups of Π° and the set of log-full subgroups of Π^{\bullet}. Then ϕ induces a bijection between the set of inertia groups of Π° associated to \log divisors of $X_{n}^{\log \circ}$ and the set of inertia groups of Π^{\bullet} associated to log divisors of $X_{n}^{\log \bullet}$.
Proof. Recall that it follows from the well-known modular interpretation of the log moduli stacks that appear in the definition of $X_{n}^{\log }$ that, for each log divisor V^{\dagger} of $X_{n}^{\log }$, there exists a log-full point P^{\dagger} such that $P^{\dagger} \in V^{\dagger}$. Thus, Theorem 5.2 follows from Proposition 3.7, (iii), (iv); Theorem 4.15; Lemma 5.1.

6. Reconstruction of tripodal divisors

We continue with the notation of $\S 5$. In the present $\S 6$, we reconstruct the set of inertia groups associated to tripodal divisors (cf. Theorem 6.6 below).
Lemma 6.1. Let V be a \log divisor of $X_{n}^{\log }$. Write $V^{\log }$ for the log scheme obtained by equipping V with the \log structure induced by the \log structure of $X_{n}^{\log }$. Let $Y^{\log } \rightarrow S$ be a smooth log curve of type $(0,3)$. For $m \in \mathbb{Z}_{>0}$, write $Y_{m}^{\log }$ for the m-th log configuration space associated to $Y^{\log } \rightarrow S$.
(i) If V is a tripodal divisor, then $V^{\log \leq 1}$ is isomorphic to $U_{X_{n-1}}$.
(ii) If V is a (g, r)-divisor, then $V^{\log \leq 1}$ is isomorphic to $U_{Y_{n-1}}$.
(iii) If V is neither a tripodal divisor nor a (g, r)-divisor, then there exists an element $m \in\{1, \ldots, n-2\}$ such that $V^{\log \leq 1}$ is isomorphic to $U_{Y_{m}} \times{ }_{S} U_{X_{n-1-m}}$.
Proof. These assertions follow immediately by considering the objects parametrized by the various schemes which appear in the assertions.

Definition 6.2. We shall say that a profinite group G is indecomposable if, for any isomorphism of profinite groups $G \simeq G_{1} \times G_{2}$, where G_{1}, G_{2} are profinite groups, either G_{1} or G_{2} is the trivial group (cf. [Ind], Definition 1.1). We shall say that a profinite group G is decomposable if G is not indecomposable.

Remark 6.3. Let $m \in \mathbb{Z}_{>0}$. Then we recall from [Ind], Theorem 3.5 (cf. also [MzTa], Remark 1.2.2; [MzTa], Proposition 2.2, (i)), that Π_{m} is indecomposable and nontrivial. If, moreover $m>1$, then (g, r, m) is completely determined by the isomorphism class of Π_{m} (cf. Theorem 3.10, (i)). If $m=1$, then the isomorphism class of Π_{m} is completely determined by $2 g-2+r$ (cf. [CmbGC], Remark 1.1.3; [MzTa], Remark 1.2.2).
Remark 6.4. Let $V, V^{\log }$ be as in Lemma $6.1 ; I_{V}$ an inertia group associated to V. Then we observe that, for suitable choices of basepoints, there is a natural homomorphism $\pi_{1}^{\text {pro-l }}\left(V^{\mathrm{log}}\right) \rightarrow Z_{\Pi_{n}}\left(I_{V}\right)$ (cf. [Hsh], Corollary 2). Moreover, this natural homomorphism is, in fact, injective (cf. (the evident pro-l version of) [SemiAn], Proposition 2.5, (i); [CmbGC], Remark 1.1.3; [MzTa], Proposition 2.2, (i); [AbsTpII], Remark 1.5.1) and surjective (cf. [AbsTpII], Remark 1.5.2; [AbsTpII], Proposition 1.6, (v)), hence yields an isomorphism

$$
\pi_{1}^{\text {pro-l }}\left(V^{\log }\right) \xrightarrow{\sim} Z_{\Pi_{n}}\left(I_{V}\right) .
$$

Lemma 6.5. Let V be a \log divisor of $X_{n}^{\log }$ and I_{V} an inertia group associated to V. Then the following hold:
(i) $Z_{\Pi_{n}}\left(I_{V}\right) / I_{V}$ is either decomposable, isomorphic to Π_{n-1}, or (in the notation of Lemma 6.1) isomorphic to $\Pi_{n-1}^{\text {tripod }} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro-l }}\left(Y_{n-1}^{\log }\right)$ (for a suitable choice of basepoint).
(ii) If $(g, r) \neq(1,1)$ or $n \geq 3$, then it holds that V is a tripodal divisor if and only if $Z_{\Pi_{n}}\left(I_{V}\right) / I_{V}$ is isomorphic to Π_{n-1}.
(iii) If $(g, r)=(1,1)$ and $n=2$, then there exist distinct log divisors E, W_{1}, W_{2}, W_{3} of $X_{n}^{\log }$ such that
$\left\{\log\right.$ divisors of $\left.X_{n}^{\log }\right\}=\left\{E, W_{1}, W_{2}, W_{3}\right\}$,
$\left\{\right.$ tripodal divisors of $\left.X_{n}^{\log }\right\}=\left\{W_{1}, W_{2}, W_{3}\right\}$,
$\left\{l o g-f u l l\right.$ points of $\left.X_{n}^{\log }\right\}=\left\{E \cap W_{1}, E \cap W_{2}, E \cap W_{3}\right\}$.
(iv) If $(g, r)=(1,1)$ and $n=2$, then it holds that V is a tripodal divisor if and only if there exists a log-full subgroup A of Π_{n} such that A does not contain any inertia group associated to V.

Proof. Assertions (i), (ii) follow from Lemma 6.1; Remarks 6.3, 6.4; [Hsh], Corollary 2. Assertion (iii) follows immediately from the well-known modular interpretation of the log moduli stacks that appear in the definition of $X_{n}^{\log }$. Assertion (iv) follows from assertion (iii) and Proposition 4.3.
Theorem 6.6. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right) ;\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

a smooth log curve of type $\left(g^{\square}, r^{\square}\right)$; $n^{\square} \in \mathbb{Z}_{>1} ; X_{n}^{\log \square}$ the n^{\square}-th log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; \Pi^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X_{n}^{\log \square}\right)$ (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups. We suppose that $r^{\square}>0$, and that ϕ induces a bijection between the set of log-full subgroups of Π° and the set of log-full subgroups of Π^{\bullet}. Then ϕ induces a bijection between the set of inertia groups of Π° associated to tripodal divisors of $X_{n}^{\log \circ}$ and the set of inertia groups of Π^{\bullet} associated to tripodal divisors of $X_{n}^{\log } \bullet$.
Proof. Theorem 6.6 follows from Remark 6.3; Theorem 5.2; Lemma 6.5, (ii), (iv).

7. Reconstruction of drift diagonals

We continue with the notation of $\S 6$. In the present $\S 7$, we reconstruct the set of inertia groups associated to drift diagonals (cf. Theorem 7.3 below).
Lemma 7.1. The outer homomorphism $\iota_{\Pi}: \Pi_{n} \rightarrow \Pi_{1} \times \cdots \times \Pi_{1}$ induced by $\iota: X_{n}^{\log }$ $\rightarrow X^{\log } \times_{S} \cdots \times_{S} X^{\log }$ (cf. Definition 2.2, (viii)) is a surjection whose kernel is topologically generated by the inertia groups associated to the naive diagonals.

Proof. It follows from [Hsh], Remark B.2, that we have a natural commutative diagram

where $\pi_{1}^{\text {pro-l }}\left(U_{X_{n}}\right) \rightarrow \pi_{1}^{\text {pro-l }}\left(U_{X_{1}}\right) \times \cdots \times \pi_{1}^{\text {pro-l }}\left(U_{X_{1}}\right)$ denotes the outer surjective homomorphism induced by the open immersion $U_{X_{n}} \hookrightarrow U_{X_{1}} \times_{S} \cdots \times_{S} U_{X_{1}}$; the two vertical arrows are isomorphisms. Thus, it follows from the definition of the notion of an inertia group that $\iota_{\Pi}: \Pi_{n} \rightarrow \Pi_{1} \times \cdots \times \Pi_{1}$ is a surjection whose kernel is topologically generated by the inertia groups associated to the naive diagonals. This completes the proof of Lemma 7.1.

Lemma 7.2. Let V be a tripodal divisor and I_{V} an inertia group associated to V. Write $\iota_{\Pi}: \Pi_{n} \rightarrow \Pi_{1} \times \cdots \times \Pi_{1}$ for the outer homomorphism induced by $\iota: X_{n}^{\log } \rightarrow$ $X^{\log } \times_{S} \cdots \times_{S} X^{\log }$ (cf. Definition 2.2, (viii)). Then the following hold:
(i) If V is a naive diagonal, then $\iota_{\Pi}\left(I_{V}\right)=\left\{1_{\Pi_{1} \times \cdots \times \Pi_{1}}\right\}$.
(ii) If V is not a naive diagonal, then $\iota_{\Pi}\left(I_{V}\right) \neq\left\{1_{\Pi_{1} \times \cdots \times \Pi_{1}}\right\}$.

Proof. Assertion (i) follows from Lemma 7.1. Assertion (ii) follows immediately the easily verified fact (i.e., by applying induction on n, together with Proposition 4.1, (i)) that if V is not a naive diagonal, then there exists an $i \in\{1, \ldots, n\}$ such that the projection $p_{i}: X_{n}^{\log } \rightarrow X^{\log }$ maps V to a cusp of $X^{\log }$.

Theorem 7.3. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right)$; $\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

a smooth log curve of type $\left(g^{\square}, r^{\square}\right)$; $n^{\square} \in \mathbb{Z}_{>1} ; X_{n}^{\log \square}$ the n^{\square}-th log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; \Pi^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X_{n}^{\log \square}\right)$ (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow[\rightarrow]{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups. We suppose that $r^{\square}>0$, and that ϕ induces a bijection between the set of log-full subgroups of Π° and the set of log-full subgroups of Π^{\bullet}. Then ϕ induces a bijection between the set of inertia groups of Π° associated to drift diagonals of $X_{n^{\circ}}^{\log \circ}$ and the set of inertia groups of Π^{\bullet} associated to drift diagonals of $X_{n}^{\log \bullet}$.

Proof. First, let us observe that $\left(g^{\circ}, r^{\circ}, n^{\circ}\right)=\left(g^{\bullet}, r^{\bullet}, n^{\bullet}\right)(c f$. Theorem 3.10, (i) $)$. Next, let us observe that when $\left(g^{\circ}, r^{\circ}\right)=\left(g^{\bullet}, r^{\bullet}\right)=(0,3)$ or $(1,1)$, Theorem 7.3 follow formally from Theorem 6.6 and Proposition 3.4, (iii).

Thus, in the remainder of the proof of Theorem 7.3, we suppose that $\left(g^{\circ}, r^{\circ}\right)=$ $\left(g^{\bullet}, r^{\bullet}\right) \neq(0,3),(1,1)$. Write $\Pi_{1}^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X^{\log \square}\right)$. Then it follows from Theorem 3.10 , (iii), that ϕ induces a commutative diagram

where $\iota_{\Pi}^{\square}: \Pi^{\square} \rightarrow \Pi_{1}^{\square} \times \cdots \times \Pi_{1}^{\square}$ is the outer homomorphism induced by $\iota^{\square}: X_{n}^{\square}{ }^{\log \square} \rightarrow$ $X^{\log \square} \times_{S} \square \cdots \times_{S \square} X^{\log \square}$ (cf. Definition 2.2, (viii)). Thus, the proof of Theorem 7.3 in the case where $\left(g^{\circ}, r^{\circ}\right)=\left(g^{\bullet}, r^{\bullet}\right) \neq(0,3),(1,1)$ follows formally from Theorem 6.6; Lemma 7.2; Proposition 3.4, (i), (ii).

8. Reconstruction of drift collections

We continue with the notation of $\S 7$. In the present $\S 8$, we reconstruct the drift collections of Π_{n} (cf. Theorem 8.14 below).

Definition 8.1. Let Λ be a set of drift diagonals of X_{n}^{log}. Then we shall say that Λ is a drift collection of $X_{n}^{\log }$ if there exists an automorphism α of $X_{n}^{\log }$ over S such that $\Lambda=\{\alpha(V) \mid V$ is a naive diagonal $\}$.

Definition 8.2. Let V_{1}, V_{2} be distinct drift diagonals and $I_{V_{1}}, I_{V_{2}}$ inertia groups associated to V_{1}, V_{2}, respectively.
(i) Since V_{1}, V_{2} are tripodal divisors (cf. Proposition 3.4, (i)), and $n>1$, there exists a unique vertex v_{1} (resp. v_{2}) of $\mathcal{G}_{V_{1}}$ (resp. $\mathcal{G}_{V_{2}}$) such that v_{1}, v_{2} are tripods. We shall say that $\left\{V_{1}, V_{2}\right\}$ is a scheme-theoretically co-cuspidal pair if there exists a cusp $y \in C_{r, n}$ which is a cusp of $\left.\mathcal{G}_{V_{1}}\right|_{v_{1}},\left.\mathcal{G}_{V_{2}}\right|_{v_{2}}$.
(ii) We shall say that $\left\{V_{1}, V_{2}\right\}$ is a group-theoretically co-cuspidal pair if there is no \log-full subgroup A such that there exist conjugates of $I_{V_{1}}, I_{V_{2}}$ that are contained in A.
(iii) We shall say that $\left\{V_{1}, V_{2}\right\}$ is a non-intersecting drift pair if $V_{1} \cap V_{2}=\emptyset$.

Lemma 8.3. Let V_{1}, V_{2} be distinct drift diagonals. Then it holds that
$\left\{V_{1}, V_{2}\right\}$ is a group-theoretically co-cuspidal pair
\Longleftrightarrow there is no log-full point contained in $V_{1} \cap V_{2}$.

Proof. This follows immediately from Proposition 4.3.
Lemma 8.4. Let V_{1}, V_{2} be log divisors. Then it holds that

$$
V_{1} \cap V_{2} \neq \emptyset \Longleftrightarrow \text { there is a log-full point contained in } V_{1} \cap V_{2}
$$

Proof. The implication \Longleftarrow is immediate. Thus, it suffices to verify the implication \Longrightarrow. Suppose that $V_{1} \cap V_{2} \neq \emptyset$. Let $P \in V_{1} \cap V_{2}$ be a point and $Q \in X_{n}^{\log }$ such that $\sharp \operatorname{Node}\left(\mathcal{G}_{Q}\right)=n$ and \mathcal{G}_{P} is obtained from \mathcal{G}_{Q} by generization (with respect to some subset of $\operatorname{Node}\left(\mathcal{G}_{Q}\right)$ (cf. $[\mathrm{CbTpI}]$, Definition 2.8)). Then it follows from the equivalence (i) \Longleftrightarrow (ii) of Proposition 2.9 that $Q \in V_{1} \cap V_{2}$. On the other hand, by Proposition 3.6, it holds that Q is a log-full point. This completes the proof of the implication \Longrightarrow.

Lemma 8.5. Every scheme-theoretically co-cuspidal pair is group-theoretically cocuspidal.
Proof. Let $\left\{V_{1}, V_{2}\right\}$ be a scheme-theoretically co-cuspidal pair, v_{1} the unique vertex of $\mathcal{G}_{V_{1}}$ which is a tripod, and $y_{1}, y_{2} \in C_{r, n}$ the two cusps of $\left.\mathcal{G}_{V_{1}}\right|_{v_{1}}$. By Lemma 8.3, to complete the proof of Lemma 8.5, it suffices to derive a contradiction under the assumption that $V_{1} \cap V_{2}$ contains a log-full point P. Thus, suppose that this assumption holds. Then v_{1} determines a unique vertex v_{1}^{P} of \mathcal{G}_{P}, which is necessarily a tripod (cf. $[\mathrm{CbTpI}]$, Definition 2.8 , (iii)). In particular, since $\mathcal{G}_{V_{2}}$ may be regarded as a generization of \mathcal{G}_{P}, the vertex v_{1}^{P} of \mathcal{G}_{P} determines a vertex w_{2} of $\mathcal{G}_{V_{2}}$ such that y_{1}, y_{2} are cusps of $\left.\mathcal{G}_{V_{2}}\right|_{w_{2}}$ (cf. [CbTpI], Definition 2.8, (iii)). Since $\left\{V_{1}, V_{2}\right\}$ is a scheme-theoretically co-cuspidal pair, it thus follows from Remark 2.4 that $V_{1}=V_{2}$, a contradiction.
Lemma 8.6. Every non-intersecting drift pair is scheme-theoretically co-cuspidal.
Proof. Let $\left\{V_{1}, V_{2}\right\}$ be a pair of distinct drift diagonals which is not a schemetheoretically co-cuspidal pair. Then since $n>1$, there exists a unique vertex v_{1} (resp. v_{2}) of $\mathcal{G}_{V_{1}}\left(\right.$ resp. $\mathcal{G}_{V_{2}}$) such that v_{1}, v_{2} are tripods (cf. Proposition 3.4, (i)). Since $\left\{V_{1}, V_{2}\right\}$ is not a scheme-theoretically co-cuspidal pair, there exist cusps
y_{1}, z_{1} of $\left.\mathcal{G}_{V_{1}}\right|_{v_{1}}$ and cusps y_{2}, z_{2} of $\left.\mathcal{G}_{V_{2}}\right|_{v_{2}}$ such that $y_{1}, z_{1}, y_{2}, z_{2} \in C_{r, n}$ are distinct elements, $\sharp\left(\left\{y_{1}, z_{1}\right\} \cap\left\{c_{1}, \ldots, c_{r}\right\}\right) \leq 1, \sharp\left(\left\{y_{2}, z_{2}\right\} \cap\left\{c_{1}, \ldots, c_{r}\right\}\right) \leq 1$ (cf. Definition 2.3). Thus, it follows from the well-known modular interpretation of the log moduli stacks that appear in the definition of $X_{n}^{\log }$ that there exist a point P of $X_{n}^{\log }$ and terminal vertices t_{1}, t_{2} of \mathcal{G}_{P} such that t_{1}, t_{2} are tripods, y_{1}, z_{1} are cusps of $\left.\mathcal{G}_{P}\right|_{t_{1}}$, and y_{2}, z_{2} are cusps of $\left.\mathcal{G}_{P}\right|_{t_{2}}$. In particular, by the equivalence (i) \Longleftrightarrow (iii) of Proposition 2.9, it holds that $P \in V_{1} \cap V_{2}$. Thus, $\left\{V_{1}, V_{2}\right\}$ is not a non-intersecting drift pair.
Proposition 8.7. Let V_{1}, V_{2} be distinct drift diagonals. Then it holds that

$$
\begin{aligned}
& \left\{V_{1}, V_{2}\right\} \text { is a scheme-theoretically co-cuspidal pair } \\
\Longleftrightarrow & \left\{V_{1}, V_{2}\right\} \text { is a group-theoretically co-cuspidal pair } \\
\Longleftrightarrow & \left\{V_{1}, V_{2}\right\} \text { is a non-intersecting drift pair. }
\end{aligned}
$$

Proof. This follows immediately from Lemmas 8.3, 8.4, 8.5, 8.6.
Definition 8.8. Let V_{1}, V_{2}, V_{3} be distinct drift diagonals. Then we shall say that $\left\{V_{1}, V_{2}, V_{3}\right\}$ is a scheme-theoretically co-cuspidal triple if $\left\{V_{1}, V_{2}\right\},\left\{V_{2}, V_{3}\right\}$, and $\left\{V_{3}, V_{1}\right\}$ are scheme-theoretically co-cuspidal pairs.
Definition 8.9. Let Λ be a set of drift diagonals such that $\sharp \Lambda=\frac{n(n-1)}{2}$. We shall say that Λ is a scheme-theoretic drift collection of X_{n}^{log} if there exist distinct drift diagonals $V_{i, j}$, where $i \in\{1, \ldots, n-1\}, j \in\{i+1, \ldots, n\}$, such that $\Lambda=\left\{V_{i, j} \mid i \in\right.$ $\{1, \ldots, n-1\}, j \in\{i+1, \ldots, n\}\}$, and, moreover, the following hold:
(a) For any $i \in\{1, \ldots, n-2\},\left\{V_{i, i+1}, V_{i+1, i+2}\right\}$ is a scheme-theoretically cocuspidal pair.
(b) For any $i \in\{1, \ldots, n-2\}, j \in\{i+2, \ldots, n-1\}$, then $\left\{V_{i, i+1}, V_{j, j+1}\right\}$ is not a scheme-theoretically co-cuspidal pair.
(c) For any $i \in\{1, \ldots, n-2\}, j \in\{i+2, \ldots, n\},\left\{V_{i, j}, V_{i, i+1}, V_{i+1, j}\right\}$ is a schemetheoretically co-cuspidal triple.
Lemma 8.10. Every drift collection of X_{n}^{log} is a scheme-theoretic drift collection of $X_{n}^{\log }$.
Proof. Let Λ be a drift collection of X_{n}^{log}. Then it follows from Proposition 3.3, (i) (cf. also Remark 3.2), that there exist distinct elements $y_{1}, \ldots, y_{n} \in C_{r, n}$ such that

$$
\Lambda=\left\{V\left(\left\{y_{i}, y_{j}\right\}\right) \mid i \in\{1, \ldots, n-1\}, j \in\{i+1, \ldots, n\} .\right.
$$

Then one verifies easily that if we write $V_{i, j} \stackrel{\text { def }}{=} V\left(y_{i}, y_{j}\right)$, then the $V_{i, j}$'s satisfy the conditions of Definition 8.9, and hence that Λ is a scheme-theoretic drift collection of X_{n}^{log}.

Lemma 8.11. Every scheme-theoretic drift collection of X_{n}^{log} is a drift collection of $X_{n}^{\log }$.

Proof. By Proposition 3.4, (ii), we may assume without loss of generality that $(g, r)=(0,3)$ or $(1,1)$. Let Λ be a scheme-theoretic drift collection of $X_{n}^{\log }$. By Definitions 2.3; 8.2, (i); 8.9, (a), there exist elements $y_{1}, y_{2}, y_{3} \in C_{r, n}$ such that $V_{1,2}=V\left(\left\{y_{1}, y_{2}\right\}\right), V_{2,3}=V\left(\left\{y_{2}, y_{3}\right\}\right)$. By Definitions 2.3; 8.2, (i); 8.9, (a), (b), there exist elements $y_{4}, \ldots, y_{n} \in C_{r, n}$ such that $V_{i, i+1}=V\left(\left\{y_{i}, y_{i+1}\right\}\right)$. Thus, by Definitions 2.3; 8.8; 8.9, (c), it holds that $V_{i, j}=V\left(\left\{y_{i}, y_{j}\right\}\right)$. Finally, since
$(g, r)=(0,3)$ or $(1,1)$, by applying a suitable automorphism of $X_{n}^{\log }$ that arises from a permutation of the $r+n$ marked points of the stable log curve $X_{n+1}^{\log } \rightarrow X_{n}^{\log }$, it follows that $\Lambda=\left\{V\left(\left\{y_{i}, y_{j}\right\}\right) \mid i \in\{1, \ldots, n-1\}, j \in\{i+1, \ldots, n\}\right\}$ is a drift collection of X_{n}^{log}.

Proposition 8.12. Let Λ be a set of drift diagonals of $X_{n}^{\log }$. Then Λ is a drift collection of $X_{n}^{\log }$ if and only if Λ is a scheme-theoretic drift collection of $X_{n}^{\log }$.
Proof. This follows immediately from Lemmas 8.10, 8.11.
Definition 8.13. We shall refer to as a drift collection of Π_{n} any collection

$$
\left\{I_{V} \mid V \in \Lambda\right\}
$$

of subgroups of Π_{n} associated to some drift collection Λ of $X_{n}^{\log }$, where I_{V} denotes an inertia group of Π_{n} associated to $V \in \Lambda$.
Theorem 8.14. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right) ;\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

a smooth log curve of type $\left(g^{\square}, r^{\square}\right)$; $n^{\square} \in \mathbb{Z}_{>1} ; X_{n \square}^{\log \square}$ the n^{\square}-th log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; \Pi^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X_{n}^{\log \square}\right)$ (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow[\rightarrow]{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups. We suppose that $r^{\square}>0$, and that ϕ induces a bijection between the set of log-full subgroups of Π° and the set of log-full subgroups of Π^{\bullet}. Then ϕ induces a bijection between the set of drift collections of Π° and the set of drift collections of Π^{\bullet} (cf. Definition 8.13).
Proof. This follows from Theorem 7.3 and Propositions 8.7, 8.12.

9. Reconstruction of generalized fiber subgroups

We continue with the notation of $\S 8$. In the present $\S 9$, we reconstruct the generalized fiber subgroups of Π_{n} (cf. Theorem 9.3 below).
Definition 9.1. Let H be a closed subgroup of Π_{n}. We shall say that H is a generalized fiber subgroup if there exist an automorphism α of $X_{n}^{\log }$ over S and a fiber subgroup $F \subseteq \Pi_{n}$ (cf. [MzTa], Definition 2.3, (iii)) such that $H=\beta(F)$, where β is an automorphism of Π_{n} which arises from α (cf. Remark 3.2; [HMM], Definition 2.1, (ii); [HMM], Remark 2.1.1).
Proposition 9.2. If $(g, r) \neq(0,3),(1,1)$, then
$\{$ generalized fiber subgroups $\}=\{$ fiber subgroups $\}$.
Proof. This follows immediately from Remark 3.2.
Theorem 9.3. For $\square \in\{\circ, \bullet\}$, let l^{\square} be a prime number; k^{\square} an algebraically closed field of characteristic $\neq l^{\square} ; S^{\square} \stackrel{\text { def }}{=} \operatorname{Spec}\left(k^{\square}\right) ;\left(g^{\square}, r^{\square}\right)$ a pair of nonnegative integers such that $2 g^{\square}-2+r^{\square}>0$;

$$
X^{\log \square} \rightarrow S^{\square}
$$

a smooth log curve of type $\left(g^{\square}, r^{\square}\right)$; $n^{\square} \in \mathbb{Z}_{>1} ; X_{n}^{\log \square}$ the n^{\square}-th log configuration space associated to $X^{\log \square} \rightarrow S^{\square} ; \Pi^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro-l }}{ }^{\square}\left(X_{n}^{\log \square}\right.$) (for a suitable choice of basepoint);

$$
\phi: \Pi^{\circ} \xrightarrow[\rightarrow]{\sim} \Pi^{\bullet}
$$

an isomorphism of profinite groups. We suppose that $r^{\square}>0$, and that ϕ induces a bijection between the set of log-full subgroups of Π° and the set of log-full subgroups of Π^{\bullet}. Then ϕ induces a bijection between the set of generalized fiber subgroups of Π° and the set of generalized fiber subgroups of Π^{\bullet} (cf. Definition 9.1).

Proof. Write $\Pi_{1}^{\square} \stackrel{\text { def }}{=} \pi_{1}^{\text {pro- } l^{\square}}\left(X^{\log \square}\right)$. For any drift collection Λ^{\square} of Π^{\square}, write $\iota^{\square}: \Pi^{\square} \rightarrow Q_{\Lambda}^{\square}$ for the surjection obtained by forming the quotient by the normal closed subgroup generated by the subgroups $\subseteq \Pi^{\square}$ that constitute the drift collection Λ^{\square}. Recall that it follows from Lemma $\overline{7} .1$ that there exist n^{\square} surjections $Q_{\Lambda \square}^{\square} \rightarrow \Pi_{1}^{\square}$, which we shall refer to as Λ^{\square}-projections, such that the resulting product homomorphism determines an isomorphism $Q_{\Lambda \square}^{\square} \xrightarrow{\sim} \Pi_{1}^{\square} \times \cdots \times \Pi_{1}^{\square}$.

Let $F^{\circ} \subseteq \Pi^{\circ}$ be a generalized fiber subgroup of Π°. Then one verifies immediately that there exists a drift collection Λ° of Π° such that F° is contained in the kernel $\operatorname{Ker}\left(p^{\circ}\right)$ of some Λ°-projection p°. Write Λ^{\bullet} for the drift collection of Π^{\bullet} determined by applying ϕ to Λ° (cf. Theorem 8.14).

Next, observe that since each factor " Π_{1} " of the n factors of the product " $\Pi_{1} \times$ $\cdots \times \Pi_{1}$ " of Lemma 7.1 is slim (cf., e.g., [MzTa], Proposition 1.4), it follows that each such factor " Π_{1} " may be reconstructed as the centralizer of any product of open subgroups of the remaining $n-1$ factors. In particular, it follows immediately from [MzTa], Corollary 3.4, that there exists a commutative diagram

where p^{\bullet} is a Λ^{\bullet}-projection, and the horizontal arrows are isomorphisms. On the other hand, it follows immediately from the definition of p^{\square} that $\operatorname{Ker}\left(p^{\square}\right)$ has a natural structure of configuration space group (whose " (g, r) " is $\neq(0,3),(1,1)!)$, and that F° is a fiber subgroup of $\operatorname{Ker}\left(p^{\circ}\right)$ (cf. [MzTa], Proposition 2.4, (i), (ii)). Thus, by [MzTa], Corollary $6.3, F^{\bullet} \stackrel{\text { def }}{=} \phi\left(F^{\circ}\right)$ is a fiber subgroup of $\operatorname{Ker}\left(p^{\bullet}\right)$, hence also of Π^{\bullet}.

Acknowledgements

I would like to thank Professor Yuichiro Hoshi and Professor Shinichi Mochizuki for suggesting the topics and helpful discussions.

References

[Asd] M. Asada, The faithfulness of the monodromy representations associated with certain families of algebraic curves, J. Pure Appl. Algebra 159 (2001), 123-147.
[Hsh] Y. Hoshi, The exactness of the log homotopy sequence, Hiroshima Math. J. 39 (2009), no. 1, 61-121.
[NodNon] Y. Hoshi and S. Mochizuki, On the combinatorial anabelian geometry of nodally nondegenerate outer representations, Hiroshima Math. J. 41 (2011), no. 3, 275-342.
[CbTpI] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial anabelian geometry of hyperbolic curves I: Inertia groups and profinite Dehn twists, Galois-Teichmüller Theory and Arithmetic Geometry, 659-811, Adv. Stud. Pure Math., 63, Math. Soc. Japan, Tokyo, 2012.
[Knu] F. F. Knudsen, The projectivity of the moduli space of stable curves II, Math. Scand. 52 (1983), 161-199.
[Ind] A. Minamide, Indecomposability of Anabelian Profinite Groups, Math. J. Okayama Univ. 60 (2018), 175-208.
[HMM] Y. Hoshi, A. Minamide and S. Mochizuki, Group-theoreticity of numerical invariants and distinguished subgroups of configuration space groups, RIMS Preprint 1870 (March 2017).
[SemiAn] S. Mochizuki, Semi-graphs of Anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006), 221322.
[CmbGC] S. Mochizuki, A combinatorial version of the Grothendieck conjecture, Tohoku Math J. 59 (2007), 455-479.
[CmbCsp] S. Mochizuki, On the Combinatorial Cuspidalization of Hyperbolic Curves, Osaka J. Math. 47 (2010), 651-715.
[AbsTpII] S. Mochizuki, Topics in Absolute Anabelian Geometry II: Decomposition Groups and Endomorphisms, J. Math. Sci. Univ. Tokyo. 20 (2013), 171-269.
[MzTa] S. Mochizuki and A. Tamagawa, The Algebraic and Anabelian Geometry of Configuration Spaces, Hokkaido Math. J. 37 (2008), no. 1, 75-131.
[NaTa] H. Nakamura and N. Takao, Galois Rigidity of pro-l Pure Braid Groups of Algebraic Curves, Trans. Amer. Math. Soc. 350 (1998), 1079-1102.
[Naka] C. Nakayama, Logarithmic étale cohomology, Math. Ann. 308 (1997), 365-404.

